[1] 狄明信,管守锐,黄醒汉. 1986. 华北地区中寒武世张夏期沉积相及古地理. 华东石油学院学报(自然科学版),(1): 1-14. [Di M X,Guan S R,Huang X H.1986. The sedimentary facies and paleogeography of Middle Cambrian Period Zhang Xia Epoch in North China. Journal of China University of Petroleum(Edition of Natural Science),(1): 1-14] [2] 冯增昭,张荫本. 2013. 碳酸盐岩岩类学. 见: 冯增昭(主编). 中国沉积学(第二版). 北京: 石油工业出版社, 137-195. [Feng Z Z, Zhang Y B.2013. Petrography of carbonate rocks. In: Feng Z Z(ed). Sedimentology of China(2nd Edition). Beijing: Petroleum Industry Press, 137-195] [3] 高计元. 1986. 碳酸盐颗粒成岩变化的实验研究. 沉积学报, 4(4): 119-127. [Gao J Y.1986. Experiment study of diagenetic variation of modern carbonate grains. Acta Sedimentologica Sinica, 4(4): 119-127] [4] 李飞,王夏,薛武强,颜佳新. 2010. 一种新的错时相沉积物: 巨鲕及其环境意义. 沉积学报, 28(3): 585-595. [Li F,Wang X,Xue W Q,Yan J X.2010. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of an achronistic facies. Acta Sedimentologica Sinica, 28(3): 585-595] [5] 李飞,武思琴,刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指示意义. 沉积学报, 33(3): 500-511. [Li F,Wu S Q,Liu K.2015. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [6] 梅冥相. 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012. New progress in the study of ooids genesis. Acta Sedimentologica Sinica, 30(1): 20-32] [7] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Esential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [8] 齐永安,杨小伟,代明月. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55-64. [Qi Y A,Yang X W,Dai M Y.2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(1): 55-64] [9] 韦明龙. 1995. 菌藻对碳酸盐颗粒的泥晶化作用研究: 以滇西保山地区下石炭统研究为例. 沉积学报,13(3): 89-97. [Wei M L.1995. Study on the crystallization of carbonate particles by alga: An example of the Lower Carboniferous study in the Baoshan area of Western Yunnan. Acta Sedimentologica Sinica,13(3): 89-97] [10] 邢延路,冯李强. 2015. 北京西山下苇甸剖面寒武系徐庄组鲕粒研究. 古地理学报, 17(4): 517-528. [Xing Y L,Feng L Q.2015. A study on ooids in limestones of the Cambrian Xuzhuang Formation at Xiaweidian outcrop in Western Hill of Beijing. Journal of Palaeogeography(Chinese Edition), 17(4): 517-528] [11] 余素玉. 1982. 化石碳酸盐岩. 北京: 地质出版社. [Yu S Y.1982. Fossil Carbonate Rock. Beijing: Geological Publishing House] [12] Bathurst R G C.1967. Oolitic films on low energy carbonate sand grains,Bimini Lagoon,Bahamas. Marine Geology, 5(2): 89-109. [13] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545-550. [14] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80(3): 236-251. [15] Flügel E.2004. Microfacies of Carbonate Rocks. New York: Spring-Verlag,142-173. [16] Friedman G M.1964. Early diagenesis and lithification in carbonate sediments. Journal of Sedimentary Research, 34(4): 777-813. [17] Ferris F G,Beveridge T J,Fyfe W S.1986. Iron-sillica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320: 609-611. [18] Kaz´mierczak J,Altermann W,Kremer B,Kempe S,Eriksson P G.2009. Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambrian Research, 173(1): 79-92. [19] Konhauser K O,Urrutia M M.1999. Bacterial clay authigenesis: A common biogeochemical process. Chemical Geology, 161(4): 399-413. [20] Marshall K C.1968. Interaction between collodial montmorillonite and cells of Rhizobium species with different inogenic surfaces. Biochim Biophys Acta, 156(1): 179-186. [21] Marshall K C.1969. Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to Rhizobia. Journal of General Microbiology, 56(3): 301-306. [22] Pratt B R.2001. Calcification of cyanobacterial filaments: Girvanella and the origin of Lower Paleozoic lime mud. Geology, 29(9): 763. [23] Reeder S L,Rankey E C.2008. Interactions between tidal flows and ooid shoals,northern Bahamas. Journal of Sedimentary Research, 78(3): 175-186. [24] Schultzelam S,Ferris F G,Sherwoodlollar B, Gerits J P.1996. Ultrastructure and seasonal growth patterns of microbial mats in a tem. Revue Canadienne De Microbiologie, 42(2): 147-161. [25] Sorby H C.1879. On the structure and origin of limestone. Quarterly Journal of the Geological Society of London, 35: 56-95. [26] Tucker M E,Wright V P,Dickson J A.1990. Carbonate Sedimentology. Oxford: Blackwell Science Publishing,1-482. [27] Walker S G,Flemming C A,Ferris F G, Beveridge T J.1989. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Applied & Environmental Microbiology, 55(11): 2976-2984. |