[1] 代明月,齐永安,陈尧,李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726-734. [Dai M Y,Qi Y A,Chen Y,Li D.2014. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(5): 726-734] [2] 陈百兵,齐永安,郑伟,李小燕. 2019. 豫西宜阳地区寒武系馒头组鲕粒中的泥晶方解石特征及其成因. 古地理学报, 21(4): 603-612. [Chen B B,Qi Y A,Zheng W,Li X Y.2019. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 21(4): 603-612] [3] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacoes Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [4] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacoes Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [5] 郭芪恒,金振奎,朱小二,王金艺. 2018. 北京下苇甸剖面张夏组鲕粒特征及其白云化机制. 现代地质, 32(4): 766-773. [Guo Q H,Jin Z K,Zhu X E,Wang J Y.2018. Characteristics of oolites and their dolomitization mechanism of the Cambrian Zhangxia Formation at Xiaweidian outcrop in Beijing. Geoscience, 32(4): 766-773] [6] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: an example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [7] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序: 兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24-33. [Mei M X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: discussion on the condensation of carbonate platform. Sedimentary Facies and Paleogeography, 16(6): 24-33] [8] 梅冥相,杨欣德. 2000. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17-21. [Mei M X,Yang X D.2000. Forced regression and forced regressive wedge system tract: revision on traditional Exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17-21] [9] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: the first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [10] 梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473-2486. [Mei M X,Guo R T,Hu Y.2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473-2486] [11] 梅冥相. 2012a. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012a. Organomineralization derived from the biomineralization: an important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [12] 梅冥相. 2012b. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012b. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [13] 梅冥相. 2012c. 从3个科学理念简论沉积学中的“白云岩问题”. 古地理学报, 14(1): 1-12. [Mei M X.2012c. Brief introduction of “Dolomite Problem”in sedimentology according to three scientific ideas. Journal of Palaeogeography(Chinese Edition), 14(1): 1-12] [14] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X.2014. Feature and nature of microbial-mat: theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [15] 梅冥相,刘丽,胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440-460. [Mei M X,Liu L,Hu Y.2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing,North China. Acta Geologica Sinica, 94(4): 999-1016] [16] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [17] 梅冥相,Muhammad Riaz,孟庆芬,刘丽. 2019a. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例. 地质论评, 65(4): 839-856. [Mei M X,Riaz M,Meng Q F,Liu L.2019a. Particular cap oncolitic grainstones of bank oolitic grainstones: an example from the Zhangxia formation of the Cambrian Miaolingian at the Chafangzi Section in Fanshi County of Shanxi Province,North China. Geological Review, 65(4): 839-856] [18] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019b. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石. 古地理学报, 21(1): 31-48. [Mei M X,Riaz M,Liu L,Meng Q F.2019b. Oncoids built by photosynthetic biofilms: an example from the Series 2 of Cambrian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(1): 31-48] [19] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019c. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103-1122. [Mei M X,Muhammad R,Liu L,Meng Q F.2019c. Cambrian leiolites dominated by cyanobacterial mats: an example from the Furongian at the Qijiayu section in Laiyuan County of Hebei Province. Geological Review, 65(5): 1103-1122] [20] 梅冥相,Khalid Latif,刘丽,孟庆芬. 2019d. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石微生物礁中的一些证据. 古地理学报, 21(2): 254-277. [Mei M X,Khalid L,Liu L,Meng Q F.2019d. Clots built by photosynthetic biofilms: some evidences from thrombolite bieherms of the Changshan Formation of the Cambrian Furongian in the Liaotung Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277] [21] 梅冥相,Khalid Latif,孟庆芬,胡媛. 2019e. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘: 以河北秦皇岛驻操营剖面为例. 地质学报, 93(1): 227-251. [Mei M X,Khalid L,Meng Q F,Hu Y.2019e. Cambrian bioherms dominated by microbial carbonate within oolitic grainston bank,Zhangxia Formation,Zhucaoying section in Qinhuangdao city of Hebei Province. Acta Geologica Sinica, 93(1): 227-251] [22] 梅冥相,Khalid Latif,孟晓庆,胡媛. 2020a. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报,94(4): 999-1016. [Mei M X,Latif K,Meng X Q,Hu Y.2020a. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: a case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999-1016] [23] 梅冥相,孟庆芬,胡媛. 2020b. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体. 地质学报, 94(2): 375-395. [Mei M X,Meng Q F,Hu Y.2020b. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation at the Jinzhouwan section in dalian city of Liaoning Province in Northeastern China. Acta Geologica Sinica, 94(2): 375-395] [24] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒;基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: essential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [25] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,south China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [26] 彭善池,赵元龙. 2018. 全球寒武系第三统和第五阶”金钉子”正式落户中国. 地层学杂志, 42(3): 325-327. [Peng S C,Zhao Y L.2018. The proposed global standard stratotype-section and point(GSSP)for the conterminous base of the Miaoling series and Wuliuan stage at Balang,Jianhe,Guizhou,China was ratified by IUGS. Journal of Stratigraphy, 42(3): 325-327] [27] 齐永安,张喜洋,代明月,王敏. 2017. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [28] 宋文天,刘建波. 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. [Song W T,Liu J B.2020. A review of cortical structure of carbonate ooid. Journal of Palaeogeography(Chinese Edition), 22(1): 147-160] [29] 王龙,吴海,张瑞,李昌伟. 2018. 碳酸盐台地的类型、特征和沉积模式: 兼论华北地台寒武纪陆表海—淹没台地的沉积样式. 地质论评, 64(1): 62-76. [Wang L,Wu H,Zhang R,Li C W.2018. The types,characteristics and depositional models of carbonate platform: implication for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China. Geological Review, 64(1): 62-76]. [30] 肖恩照,王皓,覃英伦,Khalid Latif,Muhammad Riaz.2020. 寒武纪芙蓉统均一石沉积组构及环境特征: 以河北涞源长山组为例. 沉积学报, 38(1): 76-90. [Xiao E Z,Wang H,Qin Y L,Khalid L,Muhammad R.2020. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: a case study from the Changshan Formation in Laiyuan city,Hebei Province. Acta Sedimentologica Sinica, 38(1): 76-90] [31] 颜佳新,孟琦,王夏,刘志臣,黄恒,陈发篧,郭全鼎. 2019. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望. 古地理学报, 21(2): 232-253. [Yan J X,Meng Q,Wang X,Liu Z C,Huang H,Chen F Y,Guo J D.2019. Carbonate factory and carbonate platform: progress and prospects. Journal of Palaeogeography(Chinese Edition), 21(2): 22-253] [32] 章雨旭. 2001. 试论华北板块寒武纪地层的穿时性. 沉积与特提斯地质, 21(1): 78-87. [Zhang Y X.2001. Diachromism of the Cambrian strata on the North China platform. Sedimentary Geology and Tethysian Geology, 21(1): 78-87] [33] Adachi N,Ezaki Y,Liu J,Cao J.2009. Early Ordovician reef construction in Anhui Province,South China: a geobiological transition from microbial-to metazoan-dominant reefs. Sedimentary Geology, 220: 1-11. [34] Balthasar U,Cusack M.2015. Aragonite-calcite seas: quantifying the gray area. Geology, 43: 99-102. [35] Berner R A,Kothavala Z.2001. GEOCARB Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301: 182-204. [36] Berner R A,Wagonerden Brooks J M,Ward P D.2007. Oxygen and evolution. Science, 316: 557-558. [37] Bissett A,Reimer A,de Beer D,Shiraishi F,Arp G.2008. Metabolic microenvironmental control by photosynthetic biofilms under changing macroenvironmental temperature and pH conditions. Applied and Environmental Microbiology, 74: 6306-6312. [38] Bornemann J.1886. Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergeleichenden Untersuchungen uber analoge Vorkommnisse aus anderen Landern 1. Nova Acta der Kaiserslichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, 51(1): 1-147. [39] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in laboratory. Geomicrobiology Journal, 23: 545-550. [40] Burne R V,Moore L S,Christy A,Troitzsch G,U,King P L,Carnerup A M,Hamilton P J.2014. Stevensite in the modern thrombolites of Lake Clifton,Western Australia: a missing link in microbialite mineralization? Geology, 42: 575-578. [41] Bathurst R G C.1975. Carbonate Sediments and their Diagenesis(Second Ediation),Developments in Sedimentology 12. Amsterdam,Elsevier: 1-658. [42] Campbell I H,Allen C M.2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. [43] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: the microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [44] Choquette P W,Hiatt E E.2008. Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology, 55: 423-460. [45] Cody R M,Noel P J.2012,Autogenic microbial genesis of middle Miocene palustrine ooids;nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [46] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25: 703-729. [47] Decho A W.2010. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecological Engineering, 36: 137-144. [48] Decho A W,Gutierrez T.2017. Microbial Extracellular polymeric substances(EPSs)in ocean systems. Frontiers Microbiology, 8: 1-28. [49] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [50] Desjardins P R,Buatois L A,Pratt B R,Mángano M G.2012. Forced regressive tidal flats: response to falling sea level in tidedominated settings. Journal of Sedimentary Research, 82: 149-162. [51] Diaz M R,Wagoner Nordstrand J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12: 231-249. [52] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A, Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [53] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45: 771-774. [54] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: a review. Earth-Science Reviews, 190: 536-556. [55] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [56] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S, Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [57] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,617-635. [58] Edgcomb V P,Bernhard J M,Beaudoin D,Pruss S,Welander P V,Schubotz F,Mehay S,Gillespie A L,Summons R E.2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay,Bahamas. Geobiology,11: 234-251. [59] Fabricius F H.1977. Origin of marine ooids and grapestones. Contribution of Sedimentology, 7: 1-113. [60] Ferrettia A,Messori F,Bella M D,Sabatino G,Quartieri S,Cavalazzi B,Italianoc F,Barbieri R.2019. Armoured sponge spicules from Panarea Island(Italy): implications for their fossil preservation. Palaeogeography,Palaeoclimatology,Palaeoecology,536. https://doi.org/10.1016/j.palaeo.2019.109379 [61] Flannery D T,Allwood A C,Hodyss R,Summons R E,Tuite M,Walter M R,Williford K H.2019. Microbially influenced formation of Neoarchean ooids. Geobiology, 17(2): 151-160. [62] Flemming H C,Wingender J.2010. The biofilm matrix. Nature Reviews Microbiology, 8: 623-633. [63] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: an emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [64] Flügel E.2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer-Verlag,1-976. [65] Gallagher K L,Kading T J,Braissant O,Dupraz C,Visscher P T.2012. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10: 518-530. [66] Gallagher S J,Reuning L,Himmler T,Henderiks J,De Vleeschouwer D,Groeneveld J,Lari A R,Fulthorpe C S,Bogus K.2018. Expedition 356 Shipboard Scientists. The enigma of rare Quaternary oolites in the Indian and Pacific Oceans: a result of global oceanographic physicochemical conditions or a sampling bias? Quaternary Science Reviews, 200: 114-122. [67] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [68] Gerdes G.2010. What are microbial mats? In: Seckbach J, Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems,Cellular Origin,Life in Extreme Habitats and Astrobiology 14. Berlin: Springer-Verlag,5-25. [69] Gómez J J,Fernández-López S.1994. Condensed processes in shallow platform. Sedimentary Geology, 92: 147-159. [70] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62: 1749-1769. [71] Han Z Z,Zhan X L,Chi N J,Yu X F.2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporates, 30: 373-386. [72] Hardie L A.1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24: 279-283. [73] Harris P M,Purkis S J,Ellis J.2011. Analyzing spatial patterns in modern carbonates and bodies from Great Bahama Bank. Journal of Sedimentary Research,81: 185-206. [74] Harris P M,Purkis S,Ellis J,Swart P,Reijmer J J G.2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 62: 566-589. [75] Harris P,Diaz M R,Eberli G P.2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 1-26. [76] Helland-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92: 31-52. [77] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedimentay Geology, 81: 1-9. [78] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35: 799-802. [79] Kahle C F J.2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria,nannobacteria(?),and biofilms. Carbonates and Evaporites,22: 10-22. [80] Kiessling W.2015. Fuzzy seas. Geology, 43: 191-192. [81] Kromkamp J C,Perkins R,Dijkman N,Consalvey M,Andres M,Reid R P.2007. Resistance to burial of cyanobacteria in stromatolites. Aquatic Microbial Ecology,48: 123-130. [82] Kruse P D,Reitner J R.2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45(45): 31-53. [83] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54: 485-506. [84] Latif K,Xiao E Z,Riaz M, Wang L,Khan M Y,Hussein A A A,Khan M U.2018. Sequence stratigraphy,sea-level changes and depositional systems in the Cambrian of the North China Platform: a case study of Kouquan section,Shanxi Province, China. Journal of Himalayan Earth Sciences, 51(1): 1-16. [85] Latif K,Xiao E Z,Riaz M,Hussein A A A.2019. Calcified cyanobacteria fossils from the leiolitic bioherm in the Furongian Changshan Formation,Datong(North China Platform). Carbonates and Evaporites, 34: 825-843. [86] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [87] Lenton T M,Daines S J,Mills B J W.2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178: 1-28. [88] Li Q,Li Y,Kiessling W.2015. Early Ordovician lithistid sponge-Calathium reefs on the Yangtze Platform and their paleoceanographic implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 425: 84-96. [89] Liu L J,Wu Y S,Yang H J,Riding R.2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210. [90] Liu W,Zhang X L.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58: 779-787. [91] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8: 1-21. [92] Maslov V P.1954. On the Lower Silurian of eastern Siberia. In: Shatskiy N S(ed). Voprosy geologii Azii. Moskva,Akademii Nauk SSSR, 1: 495-529[in Russian]. [93] Mazzullo S J.2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70: 10-23. [94] Mei M X,Liu S F.2017. Late Triassic sequence-stratigraphic framework of the Upper Yangtze Region,South China. Acta Geologica Sinica, 91(1): 51-75. [95] Mei M X,Khalid L,Mei C J,Gao J H,Meng Q F.2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation,North China. Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2019.105540 [96] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [97] Meister P,Johnson O,Corsetti F,Nealson K H.2011. Magnesium Inhibition Controls Spherical Carbonate Precipitation in Ultrabasic Springwater(Cedars,California)and Culture Experiments. In: Reitner J,Quéric Nadia-Valérie,Arp G(eds). Advances in Stromatolite Geobiology,Lecture Notes in Earth Sciences 131. Berlin: Springer-Verlag, 507-524. [98] Michel J,Laugié M,Pohl A,Lanteaume C,Masse J P,Donnadieu Y,Borgomano J.2019. Marine carbonate factories: a global model of carbonate platform distribution. International Journal of Earth Sciences, 108: 1773-1792. [99] Mitchum R M,Vail P R,Thompson S.1977. Seismic stratigraphy and global changes of sea level,part 2: the depositional sequence as a basic unit for stratigraphic analysis. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, 26: 53-62. [100] Mohr K I,Brinkmann N,Friedl T.2011. Cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,306-311. [101] Nicholson H A,Etheridge R.1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the‘Gray Collection’. Edinburgh: Blackwood,1-341. [102] O’Reilly S S,Mariotti G,Winter A R,Newman S A,Matys E D,McDermott F,Pruss S B,Bosak T,Summons,R E,Klepac-Ceraj V.2017. Molecular biosignatures reveal common benthic microbial sources of organicmatter in ooids and grapestones from Pigeon Cay,the Bahamas. Geobiology, 15: 112-130. [103] Pacton M,Ariztegui D,Wacey D,Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: a new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [104] Peng S C,Babcock L E,Cooper R A.2012. The Cambrian Period(Chapter 19). In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale 2012. Amsterdam, Elsevier: 437-488. [105] Perri E,Tucker M E,Słowakiewicz M,Whitaker F,Bowen L,Perrotta I D.2018. Carbonate and silicate biomineralization in a hypersaline microbial mat(Mesaieed sabkha,Qatar): roles of bacteria,extracellular polymeric substances and viruses. Sedimentology,65: 1213-1245. [106] Perry R S,Mcloughlin N,Lynne B Y,Sephton M A,Oliver J D,Perry C C,Campbell K,Engel M H,Farmer J D,Brasier M D,Staley J T.2007. Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology, 201: 157-179. [107] Peters S E,Gaines R R.2012. Formation of the‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484: 363-366. [108] Plée K,Pacton M,Ariztegui D.2010. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms(Lake Geneva,Switzerland). Geomicrobiology Journal, 27: 391-399. [109] Pollock J B.1918. Blue-green algae as agents in the deposition of marl in Michigan lakes. Report of the Michigan Academy of Science, 20: 247-260. [110] Pomar L,Hallock P.2008. Carbonate factories: a conundrum in sedimentary geology. Earth-Science Reviews, 87: 134-169. [111] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [112] Pufahl P K,Grimm K A.2003. Coated phosphate grains: proxy for physical,chemical,and ecological changes in seawater. Geology, 31: 801-804. [113] Purkis S J,Harris P M.2016. Quantitative interrogation of a fossilized carbonatesand body: the Pleistocene Miami oolite of South Florida. Sedimentology, 64: 1439-1464. [114] Purkis S J,Harris P M.2017. The extent and patterns of sediment filling of accommodation space on Great Bahama Bank. Journal of Sedimentary Reserch, 86: 294-310. [115] Rameil N,Immenhauser A,Warrlich G M D,Hillgätner H,Droste H J.2010. Morphological patterns of Aptian Lithocodium-Bacinella geobodies: relation to environment and scale. Sedimentology,57: 883-911. [116] Rankey E C,Reeder S L.2009. Holocene ooids of Atutaki atolls,Cook Islands,South Pacific. Geology, 37: 971-974. [117] Rankey E C,Reeder S L.2011. Holocene oolitic marine sand complexes of the Bahamas. Journal of Sedimentary Reserch, 81: 97-117. [118] Rankey E C,Reeder S L.2012. Tidal sands of the Bahamian archipelago. In: Davis R A,Dalrymple R W(eds). Principles of Tidal Sedimentology. Berlin: Springer-Verlag,537-565. [119] Reeder S L,Rankey E C.2008. Interactions between tidal flows and ooid shoals,northern Bahamas. Journal of Sedimentary Reserch, 78: 175-186. [120] Reijmer J J G. 2016. Carbonate factories. In: Harff J,Meschede M,Petersen S,Thiede J(eds). Encyclopedia of Marine Geosciences. Dordrecht of Netherlands, Springer: 80-84. [121] Reitner J,Aria G,Thiel V,Gautret P,Galling U,Michaelis W.1997. Organic matter in Great Salt Lake Ooids(Utah,USA): first approach to a formation via organic matrices. Facies, 36: 210-219. [122] Riaz M,Xiao E Z,Latif K,Zafar T.2019a. Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: example from the Kelan Section of Shanxi Province. Arabian Journal for Science and Engineering, 44: 391-407. [123] Riaz M,Latif K,Zafar T,Xiao E Z,Ghazi S,Wang L,Hussein A A A.2019b. Assessment of Cambrian sequence stratigraphic style of the North China Platform exposed in Wuhai division,Inner Mongolia. Himalayan Geology, 40(1): 92-102. [124] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Elements, 13: 119-124. [125] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: a new look at an old problem. Sedimentary Geology, 239: 23-36. [126] Riding R.1977. Calcified Plectonema (blue-green algae),a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46. [127] Riding R.1991a. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [128] Riding R.1991b. Cambrian calcareous cyanobacteria and algae. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,305-334. [129] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [130] Riding R.2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238. [131] Riding R.2006b. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [132] Riding R.2011. Calcified cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,211-223. [133] Riding R,Liang L Y,Lee J-H,Virgone A.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography,Palaeoclimatology,Palaeoecology, 514: 135-143. [134] Ries J B,Anderson M A,Hill R T.2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 6: 106-119. [135] Roberts J A,Kenward P A,Fowle D A,Goldstein R H,González L A,Moore D S.2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540-14545. [136] Salama W,Aref E I,Gaupp R.2013. Mineral evolution and processes of ferruginous microbialite accretion: an example fro the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya depression,Western desert,Egypt. Geobiology, 11: 15-28. [137] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geology, 71: 329-343. [138] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [139] Schlager W.1989. Drowning unconformities on carbonate platforms. In: Crevello P D,Wilson J L,Sarg J F, et al(eds). Controls on Carbonate Platform and Basin Development. SEPM Special Publication, 44: 15-25. [140] Schlager W.1998. Exposure,drowning and sequence boundaries on carbonate platforms. In: Camoin G,Davies P(eds). Reefs and Carbonate Platforms in the Pacific and Indian Oceans. International Association of Sedimentologists,Special Publication, 25: 3-21 [141] Schlager W.1999. Type 3 sequence boundaries. In: Harris P,Saller A,Simo A(eds). Carbonate Sequence Stratigraphy: Application to Reservoirs,Outcrops and Models. SEPM Special Publication, 63: 35-46. [142] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences,92: 445-464. [143] Schlager W,Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [144] Schmitt K,Heimhofer U,Frijia G,Huck S.2019. Platform-wide shift to microbial carbonate production during the late Aptian. Geology,47: 786-790. [145] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [146] Simone L.1981. Ooids: a review. Earth-Science Reviews, 16: 319-355. [147] Sipos A A,Domokos G,Jerolmack D J.2018. Shape evolution of ooids: a geometric model. Scientific Reports,8: 1758. DOI: 10.1038/s41598-018-19152-0. [148] Sorby H C.1879. The structure and origin of limestones. Proceeding of Geological Society of London, 35: 5695. [149] Spincer B R.1998. Oolitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the Upper Cambrian rocks of central Texas. Journal of Paleontology, 72: 577-584. [150] Stal L J.2012. Cyanobacterial mats and stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,65-125. [151] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different locationsand ages: evidence for a common bacterial flora. Geobiology, 11: 420-436. [152] Sun Y,Li Y L,Li L, He H P.2019. Preservation of cyanobacterial UVR-shielding pigment scytonemin in carbonate ooids formed in Pleistocene Salt Lakes in the Qaidam Basin,Tibetan Plateau. Geophysical Research Letters,46(17-18): 10375-10383. [153] Swart P,Oehlert A M,Mackenzie G J,Eberli G P,Reijmer J J G.2014 The Fertilization of the Bahamas by Saharan Dust: a trigger for carbonate precipitation? Geology, 42: 671-674. [154] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [155] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [156] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Sciences,2-9. [157] Vail P R,Mitchum Jr R M,Thompson Ⅲ S. 1977. Seismic stratigraphy and global changes of sea level,part 3: relative changes of sea level from coastal onlap. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hyd |