[1] 陈百兵,齐永安,郑伟,李小燕. 2019. 豫西宜阳地区寒武系馒头组鲕粒中的泥晶方解石特征及其成因. 古地理学报, 21(4): 603-612. [Chen B B,Qi Y A,Zheng W,Li X Y.2019. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 21(4): 603-612] [2] 代明月,齐永安,陈尧,李妲. 2014. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因. 古地理学报, 16(5): 726-734. [Dai M Y,Qi Y A,Chen Y,Li D.2014. Giant ooids and their genetic analysis form the Zhangxia Formation of Cambrian Series 3 in Mianchi area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(5): 726-734] [3] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacies Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [4] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacies Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [5] 郭芪恒,金振奎,史书婷,朱小二,李硕,陈媛,王金艺. 2020. 鲕粒粒度特征及其指示意义: 以北京西山下苇甸寒武系张夏组剖面为例. 沉积学报, 38(4): 737-746. [Guo Q H,Jin Z K,Shi S T,Zhu X E,Li S,Chen Y,Wang J Y.2020. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop,Beijing. Acta Sedimentologica Sinica, 38(4): 736-746] [6] 李飞,王夏,薛武强,颜佳新. 2010. 一种新的错时相沉积物: 巨鲕及其环境意义. 沉积学报, 28(3): 585-595 [Li F,Wang X,Xue W Q,Yan J X.2010. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of anachronistic facie. Acta Sedimentologica Sinica, 28(3): 585-595] [7] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [8] 梅冥相,杨欣德. 2000. 强迫型海退及强迫型海退楔体系域: 对传统Exxon层序地层学模式的修正. 地质科技情报, 19(2): 17-21. [Mei M X,Yang X D.2000. Forced regression and forced regressive wedge system tract: Revision on traditional exxon model of sequence stratigraphy. Geological Science and Technology Information, 19(2): 17-21] [9] 梅冥相. 2008. 显生宙罕见的巨鲕及其鲕粒形态多样性的意义: 以湖北利川下三叠统大冶组为例. 现代地质, 22(5): 683-698. [Mei M X.2008. Implication for the unusual giant oolites of the Phanerozoic and their morphological diversity: A case study from the Triassic Daye Formation at the Lichuan section in Hubei Province,South China. Geoscience, 22(5): 683-698] [10] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [11] 梅冥相. 2012a. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012a. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [12] 梅冥相. 2012b. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012b. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [13] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [14] 梅冥相,Muhammad Riaz,孟庆芬,刘丽. 2019a. 鲕粒滩相灰岩特别的核形石灰岩帽: 以山西繁峙茶坊子剖面寒武系张夏组为例. 地质论评, 65(4): 839-856. [Mei M X,Muhammad R,Meng Q F,Liu L.2019a. Particular cap oncolitic grainstones of bank oolitic grainstones: An example from the Zhangxia formation of the Cambrian Miaolingian at the Chafangzi Section in Fanshi County of Shanxi Province,North China. Geological Review, 65(4): 839-856] [15] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019b. 辽东半岛复州湾剖面寒武系第二统光合作用生物膜建造的核形石. 古地理学报, 21(1): 31-48. [Mei M X,Muhammad R,Liu L,Meng Q F.2019b. Oncoids built by photosynthetic biofilms: An example from the Series 2 of Cambrian in the Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 21(1): 31-48] [16] 梅冥相,Muhammad Riaz,刘丽,孟庆芬. 2019c. 蓝细菌微生物席主导的芙蓉统均一石生物丘: 以河北涞源祁家峪剖面为例. 地质论评, 65(5): 1103-1122. [Mei M X,Muhammad R,Liu L,Meng Q F.2019c. Cambrian leiolites dominated by cyanobacterial mats: An example from the Furongian at the Qijiayu section in Laiyuan County of Hebei Province. Geological Review, 65(5): 1103-1122] [17] 梅冥相,Khalid Latif,刘丽,孟庆芬. 2019d. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石微生物礁中的一些证据. 古地理学报, 21(2): 254-277. [Mei M X,Latif K,Liu L,Meng Q F.2019d. Clots built by photosynthetic biofilms: Some evidences from thrombolite bieherms of the Changshan Formation of the Cambrian Furongian in the Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277] [18] 梅冥相,Khalid Latif,孟晓庆,胡媛. 2020a. 鲕粒滩中光合作用生物膜构建的高能核形石: 以辽西葫芦岛三道沟剖面寒武系张夏组为例. 地质学报, 94(4): 999-1016. [Mei M X,Khalid L,Meng X Q,Hu Y.2020a. High-energy oncoids within the ooid-grained bank built by photosynthetic biofilms: A case study of the Cambrian Zhangxia Formation at the Sandaogou section of Huludao City in the western part of Liaoning Province. Acta Geologica Sinica, 94(4): 999-1016] [19] 梅冥相,孟庆芬,胡媛. 2020b. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体. 地质学报, 94(2): 375-395. [Mei M X,Meng Q F,Hu Y.2020b. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation at the Jinzhouwan section in Dalian city of Liaoning Province in northeastern China. Acta Geologica Sinica, 94(2): 375-395] [20] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,south China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [21] 彭善池,赵元龙. 2018. 全球寒武系第三统和第五阶“金钉子”正式落户中国. 地层学杂志, 42(3): 325-327. [Peng S C,Zhao Y L.2018. The proposed global standard stratotype-section and point(GSSP)for the conterminous base of the Miaoling series and Wuliuan stage at Balang,Jianhe,Guizhou,China was ratified by IUGS. Journal of Stratigraphy, 42(3): 325-327] [22] 齐永安,柴姝,张喜洋,代明月,王敏. 2016. 河南卫辉地区寒武系馒头组二段中的核形石及其沉积特征. 中国科技论文, 11(21): 2416-2421. [Qi Y A,Chai S,Zhang X Y,Dai M Y,Wang M.2016. Oncoid and their depositional features from the second member of Mantou Formation(Cambrian Series 3),Weihui area,Henan Province. China Science Paper, 11(21): 2416-2421] [23] 齐永安,张喜洋,代明月,王敏. 2017. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [24] 宋文天,刘建波. 2020. 碳酸盐鲕粒包壳结构研究综述. 古地理学报, 22(1): 147-160. [Song T W,Liu J B.2020. A review of cortical structure of carbonate ooid. Journal of Palaeogeography(Chinese Edition), 22(1): 147-160] [25] 颜佳新,孟琦,王夏,刘志臣,黄恒,陈发篧,郭全鼎. 2019. 碳酸盐工厂与浅水碳酸盐岩台地: 研究进展与展望. 古地理学报, 21(2): 232-253. [Yan J X,Meng Q,Wang X,Liu Z C,Huang H,Chen F Y,Guo J D.2019. Carbonate factory and carbonate platform: Progress and prospects. Journal of Palaeogeography(Chinese Edition), 21(2): 232-253] [26] 章雨旭. 2001. 试论华北板块寒武纪地层的穿时性. 沉积与特提斯地质, 21(1): 78-87. [Zhang Y X.2001. Diachromism of the Cambrian strata on the North China platform. Sedimentary Geology and Tethysian Geology, 21(1): 78-87] [27] Awramik S M,Buchheim H P.2009. A giant,Late Archean lake system: The Meentheena Member(Tumbiana Formation;FortescueGroup),Western Australia. Precambrian Research, 174: 215-240. [28] Bathurst R G C.1975. Carbonate Sediments and Their Diagenesis(2nd Edition). Amsterdam: Elsevier,1-658. [29] Berner R A,Kothavala Z.2001. GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301: 182-204. [30] Berner R A,Wagonerden B J M,Ward P D.2007. Oxygen and evolution. Science, 316: 557-558. [31] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in laboratory. Geomicrobiology Journal, 23: 545-550. [32] Campbell I H,Allen C M.2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8): 554-558. [33] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: The microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [34] Cody R M,Noel P J.2012. Autogenic microbial genesis of middle Miocene palustrine ooids,nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [35] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25: 703-729. [36] Decho A W.2010. Overview of biopolymer-induced mineralization: What goes on in biofilms?Ecological Engineering, 36: 137-144. [37] Decho A W,Gutierrez T.2017. Microbial extracellular polymeric substances(EPSs)in ocean systems. Frontiers Microbiology, 8: 1-28. [38] Desjardins P R,Buatois L A,Pratt B R,Mángano M G.2012. Forced regressive tidal flats: Response to falling sea level in tidedominated settings. Journal of Sedimentary Research, 82: 149-162. [39] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [40] Diaz M R,Wagoner N J D,Eberli G P,Piggot A M,Zhou J,Klaus J S.2014. Functional gene diversity of oolitic sands from Great Bahama Bank. Geobiology, 12: 231-249. [41] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A, Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62: 2090-2112. [42] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45: 771-774. [43] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: A review. Earth-Science Reviews, 190: 536-556. [44] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [45] Dupraz C,Reid R P,Braissant O,Decho A W, Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [46] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,617-635. [47] Edgcomb V P,Bernhard J M,Beaudoin D,Pruss S,Welander P V,Schubotz F,Mehay S,Gillespie A L,Summons R E.2013. Molecular indicators of microbial diversity in oolitic sands of Highborne Cay,Bahamas. Geobiology, 11: 234-251. [48] Fabricius F H.1977. Origin of marine ooids and grapestones. Contribution of Sedimentology, 7: 1-113. [49] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: An emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [50] Flügel E.2004. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. Berlin,Heidelberg: Springer-Verlag,1-976. [51] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [52] Gallagher K L,Kading T J,Braissant O,Dupraz C,Visscher P T.2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10: 518-530. [53] Han Z Z,Zhan X L,Chi N J,Yu X F.2015. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporates, 30: 373-386. [54] Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y. Geology, 24: 279-283. [55] Harris P M,Purkis S J,Ellis J.2011. Analyzing spatial patterns in modern carbonates and bodies from Great Bahama Bank. Journal of Sedimentary Research, 81: 185-206. [56] Harris P M,Purkis S,Ellis J,Swart P,Reijmer J J G.2015. Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 62: 566-589. [57] Harris P,Diaz M R,Eberli G P.2019. The formation and distribution of modern ooids on Great Bahama Bank. Annual Review of Marine Science, 11: 1-26. [58] Helland-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92: 31-52. [59] Helm R F,Potts M.2012. Extracellular matrix(ECM). In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,461-480. [60] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentary Geology, 81: 1-9. [61] James N P.1997. The cool-water carbonate depositional realm. In: James N P,Clarke J(eds). Cool-water Carbonates. Tulsa: SEPM Society for Sedimentary Geology, 56: 1-20. [62] Johnson J H.1966. A Review of the Cambrian Algae. Col Sch Mines Q 61,Ⅰ: 1-162. [63] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35: 799-802. [64] Kahle C F J.2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria,nannobacteria(?),and biofilms. Carbonates and Evaporates, 22: 10-22. [65] Kaźmierczak J,Fenchel T,Küh M,Kempe S,Kremer B,Ł?cka B and Małkowski K.2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life, 5: 744-769. [66] Large R R,Mukherjee I,Gregory D,Steadman J,Corkrey R,Danyushevsky L V.2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineralium Deposita, 54: 485-506. [67] Lenton T M,Daines S J,Mills B J W.2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178: 1-28. [68] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: Roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [69] Liu L J,Wu Y S,Yang H J,Riding R.2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin,Northwest China: Systematics and significance. Journal of Systematic Palaeontology, 14(3): 183-210. [70] Liu W,Zhang X L.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58: 779-787. [71] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8: 1-21. [72] Mei M X,Liu S F.2017. Late Triassic sequence-stratigraphic framework of the Upper Yangtze Region,South China. Acta Geologica Sinica, 91(1): 51-75. [73] Mei M X,Latif K,Mei C J,Gao J H,Meng Q F.2020. Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation,North China. Sedimentary Geology, https://doi.org/10.1016/j.sedgeo.2019.105540. [74] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [75] Michel J, Laugié Pohl M A. Lanteaume C, Masse J P,Donnadieu Y,Borgomano J.2019. Marine carbonate factories: A global model of carbonate platform distribution. International Journal of Earth Sciences, 108: 1773-1792. [76] Mitchum R,Vail P R,Thompson S.1977. Seismic stratigraphy and global changes in sea level,part 2: The depositional sequence as the basic unit for stratigraphic analysis. In: Payton C(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 53-62. [77] Nicholson H A,Etheridge R.1878. A Monograph of the Silurian Fossils of the Girvan District in Ayrshire with Special Reference to Those Contained in the‘Gray Collection’. Edinburgh: Blackwood,1-341. [78] O’Reilly S S,Mariotti G,Winter A R,Newman S A,Matys E D,McDermott F,Pruss S B,Bosak T,Summons R E,Klepac-Ceraj V.2017. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay,the Bahamas. Geobiology, 15: 112-130. [79] Pacton M,Ariztegui D,Wacey D,Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: A new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [80] Peng S C,Babcock L E,Cooper R A.2012. The Cambrian Period(Chapter 19). In: Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale 2012. Amsterdam: Elsevier,437-488. [81] Peters S E,Gaines R R.2012. Formation of the‘Great Unconformity' as a trigger for the Cambrian explosion. Nature, 484: 363-366. [82] Plée K,Pacton M,Ariztegui D.2010. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms(Lake Geneva,Switzerland). Geomicrobiology Journal, 27: 391-399. [83] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [84] Pufahl P K,Grimm K A.2003. Coated phosphate grains: Proxy for physical,chemical,and ecological changes in seawater. Geology, 31: 801-804. [85] Rankey E C,Reeder S L.2009. Holocene ooids of Atutaki atolls,Cook Islands,South Pacific. Geology, 37: 971-974. [86] Rankey E C,Reeder S L.2011. Holocene oolitic marine sand complexes of the Bahamas. Journal of Sedimentary Research, 81: 97-117. [87] Rankey E C,Reeder S L.2012. Tidal sands of the Bahamian archipelago. In: Davis R A,Dalrymple R W(eds). Principles of Tidal Sedimentology. Berlin: Springer-Verlag,537-565. [88] Reitner J,Aria G,Thiel V,Gautret P,Galling U,Michaelis W.1997. Organic matter in Great Salt Lake ooids(Utah,USA): first approach to a formation via organic matrices. Facies, 36: 210-219. [89] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: a new look at an old problem. Sedimentary Geology, 239: 23-36. [90] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Elements, 13: 119-124. [91] Riding R.1977. Calcified Plectonema (blue-green algae),a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46. [92] Riding R.1991a. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [93] Riding R.1991b. Cambrian calcareous cyanobacteria and algae. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,305-334. [94] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [95] Riding R.2006a. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238. [96] Riding R.2006b. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [97] Riding R.2011. Calcified cyanobacteria. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin: Springer,211-223. [98] Riding R,Liang L Y,Lee J H,Virgone A.2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography,Palaeoclimatology,Palaeoecology, 514: 135-143. [99] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [100] Salama W, Aref E I,Gaupp R.2013. Mineral evolution and processes of ferruginous microbialite accretion: An example for the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya depression,Western desert,Egypt. Geobiology, 11: 15-28. [101] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geology, 71: 329-343. [102] Schlager W.2003. Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92: 445-464. [103] Schlager W, Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [104] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [105] Simone L.1981. Ooids: A review. Earth-Science Reviews, 16: 319-355. [106] Sipos A A,Domokos G,Jerolmack D J.2018. Shape evolution of ooids: A geometric model. Scientific Reports, 8: 1758. DOI: 10.1038/s41598-018-19152-0. [107] Sorby H C.1879. The structure and origin of limestones. Proceeding of Geological Society of London, 35: 5695. [108] Stal L J.2012. Cyanobacterial Mats and Stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space And Time. Netherlands: Springer,65-125. [109] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different location sand ages: Evidence for a common bacterial flora. Geobiology, 11: 420-436. [110] Sumner D A,Grotzinger J P.1993. Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids. Journal of Sedimentary Petrology, 63: 974-982. [111] Tang D,Shi X,Shi Q,Wu J,Song G,Jiang G.2015. Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences, 107: 195-211. [112] Thorie A,Mukhopadhyay A,Banerjee T,Mazumdar P.2018. Giant ooids in a Neoproterozoic carbonate shelf,Simla Group,Lesser Himalaya,India: An analogue related to Neoproterozoic glacial deposits. Marine and Petroleum Geology, 98: 582-606. [113] Trower E J,Grotzinger J P.2010. Sedimentology,diagenesis,and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm Member Johnnie Formation,Death Valley region,California. Precambrian Research, 180: 113-124. [114] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [115] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [116] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Sciences,2-9. [117] Vail P R,Mitchum Jr R M,Thompson S. 1977. Seismic stratigraphy and global changes of sea level,part 3: relative changes of sea level from coastal onlap. In: Payton C E(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 63-81. [118] Vologdin A G.1962. The Oldest Algae of the USSR. Moscow: USSR Academic Science Report,1-656(in Russian). [119] Wilmeth D T,Corsetti F A,Bisenic N,Dornbos S Q,Oji T,Gonchigdorj S.2015. Punctuated growth of microbial cones within early Cambrian oncoids,Bayan Gol Formation,western Mongolia. Palaios, 30: 836-845. [120] Woo J,Kim Y H,Chough S K.2019. Facies and platform development of a microbe-dominated carbonate platform: The Zhangxia Formation(Drumian,Cambrian Series 3),Shandong Province,China. Geological Journal, 54: 1993-2015. [121] Woods A D.2013. Microbial ooids and cortoids from the Lower Triassic(Spathian)Virgin Limestone,Nevada,USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105: 91-101. |