[1] 包洪平,杨承运,黄建松. 2004. “干化蒸发”与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识. 古地理学报, 6(3): 279-288. [Bao H P,Yang C Y,Huang J S.2004. “Evaporation drying”and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 6(3): 279-288] [2] 博歇特 H,缪尔 R O,著. 袁见齐张瑞锡张昌明,译. 1976. 盐类矿床: 蒸发岩的成因、变质和变形. 北京: 地质出版社, 32-51. [Borchert H,Muir R O.
Tanslated by Yuan J Q, Zhang R X, Zhang C M, 1976. Salt Deposits: The Origin Metamorphism and Detormation of Evaporiter. Beijing: Geological Publishing House, 32-51] [3] 曹颖辉,王珊,张亚金,杨敏,闫磊,赵一民,张君龙,王显东,周肖肖,王洪江. 2019. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力. 石油勘探与开发, 46(6): 1099-1114. [Cao Y H,Wang S,Zhang Y J,Yang M,Yan L,Zhao Y M,Zhang J L,Wang X D,Zhou X X,Wang H J.2019. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area,Tarim Basin,China. Petroleum Exploration and Development, 46(6): 1099-1114] [4] 杜金虎,潘文庆,2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327-339. [Du J H,Pan W Q.2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 327-339] [5] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z.2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [6] 管树巍,张春宇,任荣,张水昌,吴林,王雷,马培领,韩长伟. 2019. 塔里木北部早寒武世同沉积构造: 兼论寒武系盐下和深层勘探. 石油勘探与开发, 46(6): 1075-1086. [Guan S W,Zhang C Y,Ren R,Zhang S C,Wu L,Wang L,Ma P L,Han C W.2019. Early Cambrian syndepositional structural of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration. Petroleum Exploration and Development, 46(6): 1075-1086] [7] 郭超,张志勇,吴林,项敦峰,王楠,肖文交. 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. [Guo C,Zhang Z Y,Wu L,Xiang D F,Wang N,Xiao W J.2022. Mesozoic-Cenozoic Coupling process of Tianshan denudation and sedimentation in the northern margin of the Tarim Basin: evidence from low-temperature thermochronology(Kuqa River Section,Xinjiang). Earth Science, 47(9): 3417-3430] [8] 何治亮,张军涛,丁茜,尤东华,彭守涛,朱东亚,钱一雄. 2017. 深层—超深层优质碳酸盐岩储层形成控制因素. 石油与天然气地质, 38(4): 633-644,763. [He Z L,Zhang J T,Ding Q,You D H,Peng S T,Zhu D Y,Qian Y X.2017. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs. Oil & Gas Geology, 38(4): 633-644,763] [9] 胡安平,沈安江,杨翰轩,张杰,王鑫,杨柳,蒙绍兴. 2019. 碳酸盐岩—膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916-928. [Hu A P,Shen A J,Yang H X,Zhang J,Wang X,Yang L,Meng S X.2019. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system. Petroleum Exploration and Development, 46(5): 916-928] [10] 胡素云,石书缘,王铜山,刘伟,白斌,徐安娜,涂建琪,黄士鹏,姜华. 2016. 膏盐环境对碳酸盐岩层系成烃、成储和成藏的影响. 中国石油勘探, 21(2): 20-27. [Hu S Y,Shi S Y,Wang T S,Liu W,Bai B,Xu A N,Tu J Q,Huang S P,Jiang H.2016. Effect of gypsum-salt environment on hydrocarbon generation,reservoir-forming and hydrocarbon accumulation in carbonate strata. China Petroleum Exploration, 21(2): 20-27] [11] 金之钧,周雁,云金表,孙冬胜,龙胜祥. 2010. 我国海相地层膏盐岩盖层分布与近期油气勘探方向. 石油与天然气地质, 31(6): 715-724. [Jin Z J,Zhou Y,Yun J B,Sun D S,Long S X.2010. Distribution of gypsum-salt cap rocks and near-term hydrocarbon exploration targets in the marine sequences of China. Oil & Gas Geology, 31(6): 715-724] [12] 李永豪,曹剑,胡文瑄,陆现彩,范明,张殿伟,洪冬冬. 2016. 膏盐岩油气封盖性研究进展. 石油与天然气地质, 37(5): 634-643. [Li Y H,Cao J,Hu W X,Lu X C,Fan M,Zhang D W,Hong D D.2016. Research advances on hydrocarbon sealing properties of gypsolyte/saline rocks. Oil & Gas Geology, 37(5): 634-643] [13] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 27(1): 210-218. [Lin C S,Li S T,Liu J.Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F.2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica, 27(1): 210-218] [14] 林良彪,陈洪德,淡永,彭勇民,邹灏. 2012. 四川盆地中寒武统膏盐岩特征与成因分析. 吉林大学学报(地球科学版),42(S2): 95-103. [Lin L B,Chen H D,Dan Y,Peng Y M,Zou H.2012. Characteristics and genesis of Middle Cambrian gypsum rock in Sichuan Basin. Journal of Jilin University(Earth Science Edition),42(S2): 95-103] [15] 林潼,王铜山,潘文庆,袁文芳,李秋芬,马卫. 2021. 埋藏过程中膏岩封闭有效性演化特征: 以塔里木盆地寒武系深层膏岩盖层为例. 石油与天然气地质, 42(6): 1354-1364. [Lin T,Wang T S,Pan W Q,Yuan W F,Li Q F,Ma W.2021. Evaluation of sealing effectiveness of gypsolyte during burial: a case study of the gypsolyte caprock in deep Cambrian,Tarim Basin. Oil & Gas Geology, 42(6): 1354-1364] [16] 刘丽红,高永进,王丹丹,白忠凯,张远银,韩淼. 2021. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响. 岩石矿物学杂志, 40(1): 109-120. [Liu L H,Gao Y J,Wang D D,Bai Z K,Zhang Y Y,Han M.2021. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin. Acta Petrologica et Mineralogica, 40(1): 109-120] [17] 吕修祥,金之钧,周新源,皮学军. 2000. 塔里木盆地库车坳陷与膏盐岩相关的油气聚集. 石油勘探与开发, 27(4): 20-21. [Lü X X,Jin Z J,Zhou X Y,Pi X J.2000. Oil and gas accumulation related to evaporite rocks in Kuqa depression of Tarim Basin. Petroleum Exploration and Development, 27(4): 20-21] [18] 吕修祥,屈怡倩,于红枫,兰晓东. 2014. 碳酸盐岩盖层封闭性讨论: 以塔里木盆地塔中北斜坡奥陶系为例. 石油实验地质, 36(5): 532-538. [Lü X X,Qu Y Q,Yu H F,Lan X D.2014. Sealing capacity of carbonate cap rocks: a case study of Ordovician in northern slope of central Tarim Basin. Petroleum Geology & Experiment, 36(5): 532-538] [19] 穆龙新. 2017. 全球油气勘探开发形势及油公司动态. 北京: 石油工业出版社,10-50. [Mu L X.2017. Global Petroleum E & D Trends and Company Dynamics. Beijing: Petroleum Industry Press,10-50] [20] 沈安江,郑剑锋,陈永权,倪新锋,黄理力. 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布. 石油勘探与开发, 43(3): 340-349. [Shen A J,Zheng J F,Chen Y Q,Ni X F,Huang L L.2016. Characteristics,origin and distribution of dolomite reservoirs in Lower-Middle Cambrian,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 340-349] [21] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 2018. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素. 天然气地球科学, 29(6): 784-795. [Wang S,Cao Y H,Du D D,Wang S,Li H H,Dong H K,Yan W,Bai Y.2018. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China. Natural Gas Geoscience, 29(6): 784-795] [22] 王兆云,赵文智,何海清. 2002. 超压与烃类生成相互作用关系及对油气运聚成藏的影响. 石油勘探与开发, 29(4): 12-15. [Wang Z Y,Zhao W Z,He H Q.2002. Study on the interaction of overpressure and hydrocarbon generation and the influence of overpressure upon hydrocarbon accumulations. Petroleum Exploration and Development, 29(4): 12-15] [23] 魏国齐,朱永进,郑剑锋,俞广,倪新锋,闫磊,田雷,黄理力. 2021. 塔里木盆地寒武系盐下构造—岩相古地理、规模源储分布与勘探区带评价. 石油勘探与开发, 48(6): 1114-1126. [Wei G Q,Zhu Y J,Zheng J F,Yu G,Ni X F,Yan L,Tian L,Huang L L.2021. Tectonic-lithofacies paleogeography,large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation,Tarim Basin,NW China. Petroleum Exploration and Development, 48(6): 1114-1126] [24] 文华国,霍飞,郭佩,甯濛,梁金同,钟怡江,苏中堂,徐文礼,刘四兵,温龙彬,蒋华川. 2021. 白云岩—蒸发岩共生体系研究进展及展望. 沉积学报, 39(6): 1321-1343. [Wen H G,Huo F,Guo P,Ning M,Liang J T,Zhong Y J,Su Z T,Xu W L,Liu S B,Wen L B,Jiang H C.2021. Advances and prospects of dolostone-evaporite paragenesis system. Acta Sedimentologica Sinica, 39(6): 1321-1343] [25] 邬光辉,李浩武,徐彦龙,苏文,陈志勇,张宝收. 2012. 塔里木克拉通基底古隆起构造—热事件及其结构与演化. 岩石学报, 28(8): 2435-2452. [Wu G H,Li H W,Xu Y L,Su W,Chen Z Y,Zhang B S.2012. The tectonothermal events,architecture and evolution of Tarim craton basement paleo-uplifts. Acta Petrologica Sinica, 28(8): 2435-2452] [26] 吴海,赵孟军,卓勤功,鲁雪松,桂丽黎,李伟强,徐祖新. 2016. 膏盐岩对地层温度及烃源岩热演化的影响定量分析: 以塔里木库车前陆盆地为例. 石油勘探与开发, 43(4): 550-558. [Wu H,Zhao M J,Zhuo Q G,Lu X S,Gui L L,Li W Q,Xu Z X.2016. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: a case study of Kuqa foreland basin,western China. Petroleum Exploration and Development, 43(4): 550-558] [27] 严威,邬光辉,张艳秋,杨果,娄洪,王孝明. 2018. 塔里木盆地震旦纪—寒武纪构造格局及其对寒武纪古地理的控制作用. 大地构造与成矿学, 42(3): 455-466. [Yan W,Wu G H,Zhang Y Q,Yang G,Lou H,Wang X M.2018. Sinian-Cambrian tectonic framework in the Tarim Basin and its influences on the paleogeography of the Early Cambrian. Geotectonica et Metallogenia, 42(3): 455-466] [28] 杨海军,陈永权,田军,杜金虎,朱永峰,李洪辉,潘文庆,杨鹏飞,李勇,安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. [Yang H J,Chen Y Q,Tian J,Du J H,Zhu Y F,Li H H,Pan W Q,Yang P F,Li Y,An H T.2020. Great discovery and its significance of ultra-deep oil and gas exploration in well luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72] [29] 赵振宇,周瑶琪,马晓鸣,冀国盛. 2007. 含油气盆地中膏盐岩层对油气成藏的重要影响. 石油与天然气地质, 28(2): 299-308. [Zhao Z Y,Zhou Y Q,Ma X M,Ji G S.2007. The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin. Oil & Gas Geology, 28(2): 299-308] [30] 赵宗举,罗家洪,张运波,吴兴宁,潘文庆. 2011. 塔里木盆地寒武纪层序岩相古地理. 石油学报, 32(6): 937-948. [Zhao Z J,Luo J H,Zhang Y B,Wu X N,Pan W Q.2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin. Acta Petrolei Sinica, 32(6): 937-948] [31] 朱光有,陈斐然,陈志勇,张颖,邢翔,陶小晚,马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. [Zhu G Y,Chen F R,Chen Z Y,Zhang Y,Xing X,Tao X W,Ma D B.2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21] [32] 朱永进,倪新锋,刘玲利,乔占峰,陈永权,郑剑锋. 2019. 裂后沉降期碳酸盐岩缓坡沉积响应及成储特征: 以塔里木盆地下寒武统肖尔布拉克组为例. 沉积学报, 37(5): 1044-1057. [Zhu Y J,Ni X F,Liu L L,Qiao Z F,Chen Y Q,Zheng J F.2019. Depositional differentiation and reservoir potential and distribution of ramp systems during post-rift period: an example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 37(5): 1044-1057] [33] 卓勤功,赵孟军,李勇,王媛. 2014. 膏盐岩盖层封闭性动态演化特征与油气成藏: 以库车前陆盆地冲断带为例. 石油学报, 35(5): 847-856. [Zhuo Q G,Zhao M J,Li Y,Wang Y.2014. Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks: an example from Kuqa Foreland Basin thrust belt. Acta Petrolei Sinica, 35(5): 847-856] [34] Alonso R N,Jordan T E,Tabbutt K T,Wagonerdervoort D S.1991. Giant evaporite belts of the Neogene central Andes. Geology, 19(4): 401-404. [35] Chen X,Wei M Y,Li X B,Li M.2020. The co-relationship of marine carbonates and evaporites: a study from the Tarim Basin,NW China. Carbonates and Evaporites, 35(4): 122. [36] Hardie L A,Eugster H P.1971. The depositional environment of marine evaporates: a case for shallow,clastic accumulation. Sedimentology, 16(3-4): 187-220. [37] Hsu K J.1972. Origin of saline giants: a critical review after the discovery of meditterance. Earth-Science Review, 8(4): 371-386. [38] Hudec M R,Jackson M P A.2007. Terra infirma: understanding salt tectonics. Earth-Science Reviews, 82(1/2): 1-28. [39] Jackson M P A.1995. Retrospective salt tectonics. In: Jackson M P A,Roberts D G,Snelson S(eds). Salt Tectonics: A Global Perspective. AAPG Memoir, 65: 1-28. [40] Kinsman J J.1969. Modes of formation,sedimentary association and diagnostic features of shallow-water and supratidal evaporites. AAPG Bulletin, 53(4): 830-840. [41] Maley V C,Huffington R M.1953. Cenozoic fill and evaporate solution in the Delaware basin,Texas and New Mexico. Bulletin of the Geological Society of America, 64(5): 539-546. [42] Salih N,Mohammed A.2017. Characterization and modeling of long-term stresse-strain behavior of water confined pre-saturated gypsum rock in Kurdistan Region,Iraq. Journal of Rock Mechanics and Geotechnical Engineering, 9: 741-748. [43] Schmalz R F.1969. Deep-water evaporite deposition: a genetic model. AAPG Bulletin, 53(4): 798-823. [44] Schmalz R F.1970. Environment of marine evaporate deposition. Miner: Industrial, 35(8): 1-7. [45] Warren J K.2006. Evaporites: Sediments,Resources and Hydrocarbons. Berlin,Heidelberg: Springer. [46] Warren J K.2016. Evaporites: A Geological Compendium(2nd edition). Cham: Springer. |