[1] 蔡习尧,窦丽玮,蒋华山,余腾孝,曹自成. 2014. 塔里木盆地塔东地区寒武系划分与对比. 石油实验地质, 36(5): 539-545. [Cai X Y,Dou L W,Jiang H S,Yu T X,Cao Z C. 2014. Classification and correlation of Cambrian in eastern Tarim Basin. Petroleum Geology & Experiment, 36(5): 539-545] [2] 陈尚斌,朱炎铭,王红岩,刘洪林,魏伟,罗跃,李伍,方俊华. 2010. 中国页岩气研究现状与发展趋势. 石油学报, 31(4): 689-694. [Chen S B,Zhu Y M,Wang H Y,Liu H L,Wei W,Luo Y,Li W,Fang J H. 2010. Research status and trends of shale gas in China. Acta Petrolei Sinica, 31(4): 689-694] [3] 程日辉,王璞珺,刘万洙,孙晓猛,单玄龙. 2006. 库鲁克塔格地区寒武系层序地层与发育模式. 新疆地质, 24(4): 353-360,475. [Cheng R H,Wang P J,Liu W Z,Sun X M,Shan X L. 2006. Sequence stratigraphy and models for the Cambrian in kuluketage,Xinjiang. Xinjiang Geology, 24(4): 353-360,475] [4] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z. 2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [5] 胡宗全,杜伟,朱彤,刘曾勤. 2022. 四川盆地及其周缘五峰组—龙马溪组细粒沉积的层序地层与岩相特征. 石油与天然气地质, 43(5): 1024-1038. [Hu Z Q,Du W,Zhu T,Liu Z Q. 2022. Sequence stratigraphy and lithofacies characteristics of fine-grained deposits of Wufeng-Longmaxi Formations in the Sichuan Basin and on its periphery. Oil & Gas Geology, 43(5): 1024-1038] [6] 黄鑫,蒲晓强. 2017. 热液活动对海底沉积物中有机质的影响. 广东海洋大学学报, 37(1): 117-124. [Huang X,Pu X Q. 2017. The influence of hydrothermal activities on the organic matter in sediment. Journal of Guangdong Ocean University, 37(1): 117-124] [7] 贾承造. 1999. 塔里木盆地构造特征与油气聚集规律. 新疆石油地质, 20(3): 177-183. [Jia C Z. 1999. Jia Chengzao. structural characteristics and oil/gas accumulative regularity in Tarim Basin. Xinjiang Petroleum Geology, 20(3): 177-183] [8] 贾承造,郑民,张永峰. 2014. 非常规油气地质学重要理论问题. 石油学报, 35(1): 1-10. [Jia C Z,Zheng M,Zhang Y F. 2014. Four important theoretical issues of unconventional petroleum geology. Acta Petrolei Sinica, 35(1): 1-10] [9] 姜欢. 2015. 塔里木盆地寒武系沉积相与烃源岩分布研究. 成都理工大学硕士学位论文. [Jiang H. 2015. Study of sedimentary facies and source rock's distribution of Cambrian,Tarim Basin. Masteral dissertation of Chengdu University of Technology] [10] 姜雪,程日辉,王璞珺,刘万洙. 2010. 塔里木盆地库鲁克塔格地区下寒武统西大山组深水沉积序列. 地质科技情报, 29(2): 52-57. [Jiang X,Cheng R H,Wang P J,Liu W Z. 2010. Deep-water sedimentary sequence of xidashan formation,early Cambrian in kuruktag,Tarim Basin. Geological Science and Technology Information, 29(2): 52-57] [11] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X. 2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [12] 姜在兴,王运增,王力,孔祥鑫,杨叶芃,张建国,薛欣宇. 2022. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点. 石油与天然气地质, 43(5): 1039-1048. [Jiang Z X,Wang Y Z,Wang L,Kong X X,Yang Y P,Zhang J G,Xue X Y. 2022. Review on provenance,transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks. Oil & Gas Geology, 43(5): 1039-1048] [13] 孔庆莹,程日辉. 2010. 塔里木盆地孔雀河地区寒武系—下奥陶统沉积特征. 吉林大学学报(地球科学版), 40(3): 527-534. [Kong Q Y,Cheng R H. 2010. Sedimentary characteristics of cambrian-lower Ordovician sequence in peacock river area in Tarim Basin,Xinjiang,NW China. Journal of Jilin University(Earth Science Edition), 40(3): 527-534] [14] 李一凡. 2016. 黔西北地区上奥陶统至下志留统细粒沉积岩形成环境与孔隙表征. 中国地质大学(北京)博士论文. [Li Y F. 2016. Depositional environment and pore characteristics of the odorvician-silurian fine-grained sedimentary rocks,northwestern Guizhou,South China. Doctoral dissertation of China University of Geosciences] [15] 李一凡,魏小洁,樊太亮. 2021. 海相泥页岩沉积过程研究进展. 沉积学报, 39(1): 73-87. [Li Y F,Wei X J,Fan T L. 2021. A review on sedimentary processes of marine mudstones and shales. Acta Sedimentologica Sinica, 39(1): 73-87] [16] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 27(1): 210-218. [Lin C S,Li S T,Liu J Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F. 2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica, 27(1): 210-218] [17] 刘天琳,姜振学,刘伟伟,张昆,谢雪恋,阴丽诗,黄一舟. 2018. 江西修武盆地早寒武世热液活动对有机质富集的影响. 油气地质与采收率, 25(3): 68-76. [Liu T L,Jiang Z X,Liu W W,Zhang K,Xie X L,Yin L S,Huang Y Z. 2018. Effect of hydrothermal activity on the enrichment of sedimentary organic matter at Early Cambrian in the Xiuwu Basin. Petroleum Geology and Recovery Efficiency, 25(3): 68-76] [18] 刘伟,张光亚,潘文庆,邓胜徽,李洪辉. 2011. 塔里木地区寒武纪岩相古地理及沉积演化. 古地理学报, 13(5): 529-538. [Liu W,Zhang G Y,Pan W Q,Deng S H,Li H H. 2011. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 13(5): 529-538] [19] 刘文,吴春明,吕新彪,杨恩林,王祥东,汪一凡,吴建亮. 2016. 库鲁克塔格早寒武世泥质岩的地球化学特征及其地质意义. 中国地质, 43(6): 1999-2010. [Liu W,Wu C M,Lü X B,Yang E L,Wang X D,Wang Y F,Wu J L. 2016. Geochemical characteristics and geological significance of Early Cambrian argillaceous rocks in Kuruk Tag,Xinjiang. Geology in China, 43(6): 1999-2010] [20] 石开波,蒋启财,刘波,潘文庆,田景春. 2017. 塔里木盆地东北缘库鲁克塔格地区寒武纪—奥陶纪沉积特征及演化. 岩石学报, 33(4): 1204-1220. [Shi K B,Jiang Q C,Liu B,Pan W Q,Tian J C. 2017. Sedimentary characteristics and evolution of Cambrian-Ordovician in Quruqtagh area,NE Tarim Basin,Xinjiang. Acta Petrologica Sinica, 33(4): 1204-1220] [21] 王招明. 2014. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律. 天然气地球科学, 25(2): 153-166. [Wang Z M. 2014. Formation mechanism and enrichment regularities of kelasu subsalt deep large gas field in kuqa depression,Tarim Basin. Natural Gas Geoscience, 25(2): 153-166] [22] 杨伟芳,杨群慧,潘安阳. 2011. Logatchev热液场附近表层沉积物中有机质的组成特征、来源及其影响因素. 海洋学研究, 29(1): 9-16. [Yang W F,Yang Q H,Pan A Y. 2011. Characteristics of organic composition and source of organic matter in surface sediments near the Logatchev hydrothermal field. Journal of Marine Sciences, 29(1): 9-16] [23] 杨赟昊,高志前,樊太亮,刘旺威. 2022. 下寒武统黑色岩系沉积环境与控烃差异: 以塔里木盆地西北缘和东北缘为例. 断块油气田, 29(1): 47-52. [Yang Y H,Gao Z Q,Fan T L,Liu W W. 2022. The differences of sedimentary environment and hydrocarbon control of Lower Cambrian black rock series: a case study of northwestern and northeastern margin,Tarim Basin. Fault-Block Oil & Gas Field, 29(1): 47-52] [24] 张光亚,刘伟,张磊,于炳松,李洪辉,张宝民,王黎栋. 2015. 塔里木克拉通寒武纪—奥陶纪原型盆地、岩相古地理与油气. 地学前缘, 22(3): 269-276. [Zhang G Y,Liu W,Zhang L,Yu B S,Li H H,Zhang B M,Wang L D. 2015. Cambrian-ordovician prototypic basin,paleogeography and petroleum of Tarim craton. Earth Science Frontiers, 22(3): 269-276] [25] 张水昌,R L WANG,金之钧,张宝民,王大锐,边立曾. 2006. 塔里木盆地寒武纪—奥陶纪优质烃源岩沉积与古环境变化的关系: 碳氧同位素新证据. 地质学报, 80(3): 459-466. [Zhang S C,Wang R L, Jin Z J,Zhang B M,Wang D R,Bian L Z. 2006. The relationship between the cambrian—Ordovician high-TOC source rock development and paleoenvironment variations in the tariam basin,western China: Carbon and oxygen isotope evidence. Acta Geologica Sinica, 80(3): 459-466] [26] 周肖贝,李江海,傅臣建,李文山,王洪浩. 2012. 塔里木盆地北缘南华纪—寒武纪构造背景及构造-沉积事件探讨. 中国地质, 39(4): 900-911. [Zhou X B,Li J H,Fu C J,Li W S,Wang H H. 2012. A discussions on the Cryogenian-Cambrian tectonic-sedimentary event and tectonic setting of northern Tarim Basin. Geology in China, 39(4): 900-911] [27] 朱如凯,李梦莹,杨静儒,张素荣,蔡毅,曹琰,康缘. 2022. 细粒沉积学研究进展与发展方向. 石油与天然气地质, 43(2): 251-264. [Zhu R K,Li M Y,Yang J R,Zhang S R,Cai Y,Cao Y,Kang Y. 2022. Advances and trends of fine-grained sedimentology. Oil & Gas Geology, 43(2): 251-264] [28] 邹才能,朱如凯,吴松涛,杨智,陶士振,袁选俊,侯连华,杨华,徐春春,李登华,白斌,王岚. 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. [Zou C N,Zhu R K,Wu S T,Yang Z,Tao S Z,Yuan X J,Hou L H,Yang H,Xu C C,Li D H,Bai B,Wang L. 2012. Types,characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 33(2): 173-187] [29] Algeo T,Lyons T. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: 1-23. [30] Algeo T J,Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268: 211-225. [31] Algeo T J,Rowe H. 2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325: 6-18. [32] Aplin A C,MacQuaker J H S. 2011. Mudstone diversity: Origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin, 95: 2031-2059. [33] Bertrand P,Shimmield G,Martinez P,Grousset F,Jorissen F,Paterne M,Pujol C,Bouloubassi I,Menard P B,Peypouquet J P,Beaufort L,Sicre M A,Lallier-Verges E,Foster J M,Ternois Y. 1996. The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies. Marine Geology, 130: 1-9. [34] Brumsack H J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography,Palaeoclimatology,Palaeoecology, 232: 344-361. [35] Calvert S E,Pedersen T F. 1993. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113: 67-88. [36] Calvert S E. 1987. Oceanographic controls on the accumulation of organic matter in marine sediments. Geological Society,London,Special Publication, 26: 137-151. [37] Caplan M L,Bustin R M,Grimm K A. 1996. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication. Geology, 24: 715-718. [38] Cocks L R M. 2001. Ordovician and Silurian global geography: presidential Address,delivered 3 May 2000. Journal of the Geological Society, 158: 197-210. [39] Douville E,Bienvenu P,Charlou J L,Donval J P,Fouquet Y,Appriou P,Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochimica et Cosmochimica Acta, 63: 627-643. [40] Dymond J,Suess E,Lyle M. 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7: 163-181. [41] Francois R,Honjo S,Manganini S,Ravizza G. 1995. Biogenic Barium fluxes to the deep sea: implications for paleoproductivity reconstruction. Global Biogeochemical Cycles, 9: 289-303. [42] Hu Z Q,Gao Z Q,Liu Z B,Jiang W,Wei D,Li Y. 2022. Characteristics of Cambrian tectonic-lithofacies paleogeography in China and the controls on hydrocarbons. Journal of Petroleum Science and Engineering, 214: 110473. [43] Gao Z Q,Shi J Y,Lü J L,Chang Z. 2022. High-frequency sequences,geochemical characteristics,formations,and distribution predictions of the lower Cambrian Yuertusi Formation in the Tarim Basin. Marine and Petroleum Geology, 146: 105966. [44] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A C M,Levrard B. 2004. A long-term numerical solution for the insolation quantities oftheEarth. Astronomy & Astrophysics, 428: 261-285. [45] Lazar O R,Bohacs K M,MacQuaker J H S,Schieber J,Demko T M. 2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85: 230-246. [46] McLennan S M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry,Geophysics,Geosystems: 2. doi: 10.1029/2000GC000109. [47] Mclennan S. 1989. Rare earth elements in sedimentary rocks;influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200. [48] McManus J,Berelson W M,Klinkhammer G P,Johnson K S,Coale K H,Anderson R F,Kumar N,Burdige D J,Hammond D E,Brumsack H J,McCorkle D C,Rushdi A. 1998. Geochemistry of Barium in marine sediments: implications for its use as a paleoproxy. Geochimica et Cosmochimica Acta, 62: 3453-3473. [49] Morford J L,Emerson S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63: 1735-1750. [50] Morris R J. 1987. The formation of organic-rich deposits in two deep-water marine environments. Geological Society,London,Special Publication, 26: 153-166. [51] Murphy A E,Sageman B B,Hollander D J,Lyons T W,Brett C E. 2000. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: Clastic starvation,seasonal water-column mixing,and efficient biolimiting nutrient recycling. Paleoceanography, 15: 280-291. [52] Murray R W,Buchholtz Ten Brink M R,Gerlach D C,Russ G P,Jones D L. 1991. Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California: assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55: 1875-1895. [53] Owen A W,Armstrong H A,Floyd J D. 1999. Rare earth elements in chert clasts as provenance indicators in the Ordovician and Silurian of the Southern Uplands of Scotland. Sedimentary Geology, 124: 185-195. [54] Pfeifer K,Kasten S,Hensen C,Schulz H D. 2001. Reconstruction of primary productivity from the Barium contents in surface sediments of the South Atlantic Ocean. Marine Geology, 177: 13-24. [55] Rimmer S M,Thompson J A,Goodnight S A,Robl T L. 2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeography,Palaeoclimatology,Palaeoecology, 215: 125-154. [56] Sageman B B,Murphy A E,Werne J P,Ver Straeten C A,Hollander D J,Lyons T W. 2003. A tale of shales: the relative roles of production,decomposition,and dilution in the accumulation of organic-rich strata,Middle-Upper Devonian,Appalachian Basin. Chemical Geology, 195: 229-273. [57] Schieber J. 1996. Early diagenetic silica deposition in algal cysts and spores: a source of sand in black shales? Journal of Sedimentary Research, 66: 175-183. [58] Schieber J. 2016. Mud re-distribution in epicontinental basins: exploring likely processes. Marine and Petroleum Geology, 71: 119-133. [59] Schieber J,Krinsley D,Riciputi L. 2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406: 981-985. [60] Stow D A V,Shanmugam G. 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25: 23-42. [61] Stow D A V,Huc A Y,Bertrand P. 2001. Depositional processes of black shales in deep water. Marine and Petroleum Geology, 18: 491-498. [62] Tribovillard N,Algeo T J,Baudin F,Riboulleau A. 2012. Analysis of marine environmental conditions based onmolybdenum-uranium covariation: applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46-58. [63] Tribovillard N,Algeo T J,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232: 12-32. [64] Tyson R V,Pearson T H. 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society,London,Special Publications, 58: 1-24. [65] Werne J P,Sageman B B,Lyons T W,Hollander D J. 2002. An integrated assessment of a “type euxinic”deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. American Journal of Science, 302: 110-143. [66] Wignall P B,Twitchett R J. 1996. Oceanic Anoxia and the end Permian mass extinction. Science, 272: 1155-1158. [67] Wignall P B. 1991. Model for transgressive black shales? Geology, 19: 167-170. [68] Wortmann U G,Hesse R,Zacher W. 1999. Major element analysis of cyclic black shales: paleoceanographic implications for the Early Cretaceous deep western tethys. Paleoceanography, 14: 525-541. [69] Xu Z Q,He B Z,Zhang C L,Zhang J X,Wang Z M,Cai Z H. 2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples. Precambrian Research, 235: 150-162. |