[1] 陈金勇,韩作振,范洪海,迟乃杰. 2014a. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究. 沉积学报, 32(3): 494-502. [Chen J Y,Han Z Z,Fan H H,Chi N J.2014a. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation(Third Series of Cambrian),Shandong Province. Acta Sedimentologica Sinica, 32(3): 494-502] [2] 陈金勇,韩作振,范洪海,陈吉涛,迟乃杰. 2014b. 鲁西寒武系凝块石特征及其形成机制的探讨. 地质学报, 88(6): 967-978. [Chen J Y,Han Z Z,Fan H H,Chen J T,Chi N J.2014b. Characteristics and formation mechanism of Cambrian thrombolite in western Shandong Province. Acta Geologica Sinica, 88(6): 967-978] [3] 陈小炜,牟传龙,葛祥英,康健威,周肯肯. 2013. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素. 石油天然气学报, 34(11): 8-14. [Chen X W,Mou C L,Ge X Y,Kang J W,Zhou K K.2013. Distributing characteristics and controlling factors for oolitic shoal of the Third Series of Cambrian in North China. Journal of Oil and Gas Technology, 34(11): 8-14] [4] 杜汝霖. 1992. 前寒武纪古生物学及地史学. 北京: 地质出版社,1-193. [Du R L.1992. Precambrian Paleobiology and Geohistory. Beijing: Geological Publishing House,1-193] [5] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacoes Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [6] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacoes Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [7] 贡芸芸. 2016. 寒武系凝块石生物丘的沉积组构: 以鲁西地区张夏组为例. 现代地质, 30(2): 436-444. [Gong Y Y.2016. Sedimentary fabrics for the Cambrian thrombolite bioherm: An example from the Zhangxia Formation in western Shandong Province. Geoscience, 30(2): 436-444] [8] 郭芪恒,金振奎,朱小二,王金艺. 2018. 北京下苇甸剖面张夏组鲕粒特征及其白云化机制. 现代地质, 32(4): 766-773. [Guo Q H,Jin Z K,Zhu X E,Wang J Y.2018. Characteristics of oolites and their dolomitization mechanism of the Cambrian Zhangxia Formation at Xiaweidian outcrop in Beijing. Geoscience, 32(4): 766-773] [9] 韩作振,陈吉涛,张晓蕾,于学峰. 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物岩特征研究. 地质学报, 83(8): 1097-1103. [Han Z Z,Chen J T,Zhang X L,Yu X F.2009. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation(Third Series of Cambrian),Shandong Province. Acta Geologica Sinica, 83(8): 1097-1103] [10] 卢衍豪,张文堂,朱兆玲,林焕令,周志毅,袁金良,彭善池,钱逸,章森桂,项礼文,李善姬,郭鸿俊,罗惠麟. 1994. 关于中国寒武系建阶的建议. 地层学杂志, 18(4): 318-328. [Lu Y H,Zhang W T,Zhu Z L,Lin H L, Zhou Z Y,Yuan J L,Peng S C,Qian Y,Zhang S G,Xiang L W,Li S J,Guo H J,Luo H L.1994. Suggestions for the establishment of the Cambrian Stages in China. Journal of Stratigrapphy, 18(4): 318-328] [11] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [12] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序: 兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24-33. [Mei M X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: Discussion on the condensation of carbonate platform. Sedimentary Facies and Paleogeography, 16(6): 24-33] [13] 梅冥相,马永生,周丕康,苏德辰,罗光文. 1997. 碳酸盐沉积学导论. 北京: 地震出版社,1-306. [Mei M X,Ma Y S,Zhou P K,Su D C,Luo G W.1997. Introduction of Carbonate Sedimentology. Beijing: Seismological Press,1-306] [14] 梅冥相. 2007a. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-232. [Mei M X.2007a. Revised classification of microbial carbonates: Replenishment to the classification of limestones. Earth Science Frontiers, 14(5): 222-232] [15] 梅冥相. 2007b. 从凝块石概念的演变论微生物碳酸盐岩的研究进展. 地质科技情报, 26(6): 1-9. [Mei M X.2007b. Discussion on advances of microbial carbonates from the terminological change of thrombolites. Geological Science and Technology Information, 26(6): 1-9] [16] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [17] 梅冥相. 2011a. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597. [Mei M X.2011a. Microbial-mat sedimentology: A young branch on sedimentology. Advances in Earth Sciences, 26(6): 586-597] [18] 梅冥相. 2011b. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列: 以北京西郊下苇甸剖面为例. 中国地质, 38(2): 317-337. [Mei M X.2011b. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing. Geology in China, 38(2): 317-337] [19] 梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473-2486. [Mei M X,Guo R T,Hu Y.2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473-2486] [20] 梅冥相. 2012a. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012a. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [21] 梅冥相. 2012b. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012b. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [22] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X.2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [23] 梅冥相,刘丽,胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440-461. [Mei M X,Liu L,Hu Y.2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing,North China. Acta Geologica Sinica, 89(2): 440-461] [24] 梅冥相,孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18(2): 127-146. [Mei M X,Meng Q F.2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography(Chinese Edition), 18(2): 127-146] [25] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [26] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Essential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [27] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,South China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [28] 齐永安,王艳鹏,代明月,李妲. 2014. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素. 微体古生物学报, 31(3): 243-255. [Qi Y A,Wang Y P,Dai M Y,Li D.2014. Thrombolites and controlling factors from the Zhangxia Formation(Third Series,Cambrian)in Dengfeng,western Henan. Acta Micropalaeontologica Sinica, 31(3): 243-255] [29] 齐永安,孙晓芳,代明月,张喜洋. 2017a. 豫西鲁山寒武系馒头组微生物岩旋回及其演化. 微体古生物学报, 34(2): 170-178. [Qi Y A,Sun X F,Dai M Y,Zhang X Y.2017a. The microbialite cycles and their evolution from the Cambrian Mantou Formation,Lushan,western Henan Province,central China. Acta Micropalaeontologica Sinica, 34(2): 170-178] [30] 齐永安,张喜洋,代明月,王敏. 2017b. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017b. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [31] 项礼文,朱兆玲,李善姬,周志强. 1999. 中国地层典·寒武系. 北京: 地质出版社,1-95. [Xiang L W,Zhu Z L,Li S J,Zhou Z Q.1999. Stratigraphycal Lexicon of China: Cambrian. Beijing: Geological Publishing House,1-95] [32] Adachi N,Nakai T,Ezaki Y,Liu J B.2014. Late Early Cambrian archaeocyath reefs in Hubei Province,South China: Modes of construction during their period of demise. Facies, 60: 703-717. [33] Adachi N,Kotani A,Ezaki Y,Liu J B.2015. Cambrian Series 3 lithistid sponge-microbial reefs in Shandong Province,North China: Reef development after the disappearance of archaeocyaths. Lethaia, 48: 1-12. [34] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37: 1163-1178. [35] Arp G,Helms G,Karlinska K,Schumann G,Reimer A,Reitner J,Trichet J.2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati,Republic of Kiribati,Central Pacific. Geomicrobiology Journal, 29: 29-65. [36] Balthasar U,Cusack M.2015. Aragonite-calcite seas: Quantifying the gray area. Geology, 43: 99-102. [37] Bosak T,Knoll A H,Petroff A P.2013. The meaning of stromatolites. Annual Review of Earth and Planetary Sciences, 41: 21-44. [38] Bots P,Benning L G,Rickaby R E M,Shaw S.2011. The role of SO4 in the switch from calcite to aragonite seas. Geology, 39: 331-334. [39] Burne R V,Moore L S.1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254. [40] Burne R V,Moore L S,Christy A,Troitzsch G U,King P L,Carnerup A M,Hamilton P J.2014. Stevensite in the modern thrombolites of Lake Clifton,Western Australia: A missing link in microbialite mineralization?Geology, 42: 575-578. [41] Castro-Contreras S I,Gingras M K,Pecoits E,Aubet N R,Petrash D,Castro-Contreras S M,Dick G,Planavsky N,Konhauser K O.2014. Textural and geochemical features of freshwater microbialites from Laguna Bacalar,Quintana Roo,Mexico. Palaios, 29: 192-209. [42] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: The microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [43] Catuneanu O,Galloway W E,Kendall C G St C,Miall A D,Posamentier H W,Strasser A,Tucker M E.2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy,44(3):173-245. [44] Chafetz H,Barth J,Cook M,Guo X,Zhou J.2018. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sedimentary Geology, 365: 21-33. [45] Choquette P W,Hiatt E E.2008. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites. Sedimentology, 55: 423-460. [46] Chen J T,Lee J-H,Woo J.2014. Formative mechanisms,depositional processes,and geological implications of Furongian(Late Cambrian)reefs in the North China Platform. Palaeogeography,Palaeoclimatology,Palaeoecology, 414: 246-259. [47] Cody R M,Noel P J.2012. Autogenic microbial genesis of Middle Miocene palustrine ooids,Nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [48] Decho A W.2010. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecological Engineering, 36: 137-144. [49] Decho A W,Gutierrez T.2017. Microbial extracellular polymeric substances(epss)in ocean systems. Frontiers Microbiology, 8: 1-28. [50] Desjardins P R,Buatois L A,Pratt B R,Mangano M G.2012. Forced regressive tidal flats: Response to falling sea level in tide dominated settings. Journal of Sedimentary Research, 82: 149-162. [51] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [52] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [53] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,Modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin:Springer,617-635. [54] Ezaki Y,Liu J B,Adachi N.2003. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province,South China: Implications for the nature of oceanic conditions after the End-Permian extinction. Palaios, 18:388-402. [55] Ezaki Y,Liu J B,Adachi N,Yan Z.2017. Microbialite HYPERLINK “https://pubs.geoscienceworld.org/sepm/palaios/article/32/9/559/506749/microbialite-development-during-the-protracted”development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia formation(cambrian series 3)in Shandong Province,North China. Paliaos, 32: 559-571. [56] Feldmann M,Mckenzie J A.1998. Stromatolite-thrombolite associations in a modern environment,Lee Stocking Island,Bahamas. Palaios, 13: 201-212. [57] Flemming H C,Wingender J.2010. The biofilm matrix. Nature Reviews-Microbiology, 8: 623-633. [58] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: An emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [59] Flügel E.2010. Microfacies of Carbonate Rocks. Berlin:Springer,73-176. [60] Frantz C M,Petryshyn V A,Corsetti F A.2015. Grain trapping by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time. Geobiology, 13: 409-423. [61] Gómez J J,Fernandez-López S.1994. Condensed processes in shallow platform. Sedimentary Geology, 92: 147-159. [62] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [63] Gerdes G.2010. What are microbial mats? In: Seckbach J,Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Cellular Origin,Life in Extreme Habitats and Astrobiology,14. Berlin: Springer-Verlag,5-25. [64] Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600m.y. Geology,24:279-283. [65] Hell-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92: 31-52. [66] Howell J,Woo J,Chough S K.2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 299: 335-347. [67] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentay Geology, 81: 1-9. [68] Kennard J M,James N P.1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios, 1: 492-503. [69] Kiessling W.2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology,Evolution,and Systematics, 40: 173-192. [70] Kiessling W.2015. Fuzzy seas. Geology, 43: 191-192. [71] Kirkham A,Tucker M E.2018. Thrombolites,spherulites and fibrous crusts(Holkerian,Purbeckian,Aptian): Context,fabrics and origins. Sedimentary Geology, 374: 69-84. [72] Kruse P D,Reitner J R.2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45: 31-53. [73] Laval B,Cady S L,Pollack J C,McKayk C P,Bird J S,Grotzinger J P,Ford D C,Bohm H R.2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407: 625-629. [74] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: Roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [75] Lee J-H,Lee H S,Chen J T,Woo J,Chough S K.2014. Calcified microbial reefs in the Cambrian Series 2 of the North China Platform: Implications for the evolution of Cambrian calcified microbes. Palaeogeography,Palaeoclimatology,Palaeoecology, 403: 30-42. [76] Lee J-H,Chen J T,Chough S K.2015. The Middle-Late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145: 66-84. [77] Lee J-H,Riding R.2018. Marine oxygenation,lithistid sponges,and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 181: 98-121. [78] Liu L J,Wu Y S,Jiang H X,Riding R.2016. Calcified rivulariaceans from the Ordovician of the Tarim Basin,Northwest China: Phanerozoic lagoonal examples,and possible controlling factors. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 371-381. [79] Louyakis A S,Mobberley J M,Vitek B E,Visscher P T,Hagan P D,Reid R P,Kozdon R,Orland I J,Valley J W,Planavsky N J,Casaburi G,Foster J S.2017. A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular,biochemical,and stable isotope analyses. Astrobiology, 17: 413-430. [80] Louyakis A S,Gourle H,Casaburi G,Bonjawo R M E,Duscher A A,Foster J S.2018. A year in the life of a thrombolite: Comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environmental Microbiology, 20(2): 842-861. [81] Luchinina V A.2009. Renalcis and Epiphyton as different stages in the life cycle of calcareous algae. Paleontological Journal, 43: 463-468. [82] Mei M X,Ma Y S,Deng J,Chen H J.2005. From cycles to sequences: Sequence stratigraphy and relative sea level changes for the Late Cambrian of the North China Platform. Acta Geologica Sinica(English Edition), 79(3): 372-383. [83] Mei M X,Tucker M E.2013. Milankovitch-driven cycles in the Precambrian of China: The Wumishan Formation. Journal of Palaeogeography, 2(4): 369-389. [84] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [85] Mobberley J M,Khodadad C L M,Foster J S.2013. Metabolic potential of lithifying cyanobacteria-dominated thrombolytic mats. Photosynthesis Reserch, 118: 125-140. [86] Mobberley J M,Khodadad C L,Visscher P T,Reid R P,Hagan P,Foster J S.2015. Inner workings of thrombolites: Spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Scientific Report, 5: 1-15. [87] Pacton M,Ariztegui D,Wacey D, Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: A new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [88] Pedley M.2014. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments. Sedimentology, 61: 22-40. [89] Perri E,Tucker M E,Slowakiewicz M,Whitaker F,Bowen L,Perrotta I D.2018. Carbonate and silicate biomineralization in a hypersaline microbial mat(Mesaieed sabkha,Qatar): Roles of bacteria,extracellular polymeric substances and viruses. Sedimentology, 65: 1213-1245. [90] Peters S E,Gaines R R.2012. Formation of the'Great Unconformity' as a trigger for the Cambrian explosion. Nature, 484: 363-366. [91] Planavsky N,Ginsburg R N.2009. Taphonomy of modern marine Bahamian microbialites. Palaios, 24: 5-17. [92] Planavsky N,Reid R P,Andres M,Visscher P T,Myshrall K L,Lyons T W.2009. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology, 7: 566-576. [93] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [94] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239: 23-36. [95] Riding R.1991. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [96] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(Supplement.1): 179-214. [97] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [98] Riding R.2011. Microbialites,Stromatolites,and Thrombolites. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin:Springer: 635-654. [99] Ries J B,Anderson M A,Hill R T.2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 6: 106-119. [100] Roberts J A,Kenward P A,Fowle D A,Goldstein R H,Gonzàlez L A,Moore D S.2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540-14545. [101] Rowland S M,Shapiro R S.2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Kiessling W,Flügel E,Golonka J(eds). Phanerozoic Reef Patterns. Tulsa: SEPM Special Publication 72,95-128. [102] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [103] S $\check{a}$s $\check{a}$ran E,Bucur I I,Ples G,Riding R.2014. Late Jurassic Epiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification?Palaeogeography,Palaeoclimatology,Palaeoecology, 401: 122-131. [104] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geoogy, 71: 329-343. [105] Schlager W.1999. Type 3 sequence boundaries. In: Harris P,Saller A,Simo A(eds). Carbonate Sequence Stratigraphy: Application to Reservoirs,Outcrops and Models. SEPM Special Publication, 63: 35-46. [106] Schlager W,Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [107] Schlagintweit F,Bover-Arnal T.2013. Remarks on Bainella Radoicic,1959(type species B. irregularis)and its representatives. Facies, 59: 59-73. [108] Shapiro R S.2000. A comment on the systematic confusion of thrombolites. Palaios, 15: 166-169. [109] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [110] Stal L J.2012. Cyanobacterial Mats and Stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,65-125. [111] Stanley S M,Hardie L A.1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography,Palaeoclimatology,Palaeoecology, 144: 3-19. [112] Tang D J,Shi X Y,Jiang G Q.2013. Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences, 102(2): 1-13. [113] Theisen C H,Sumner D Y.2016. Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin,California and Nevada. Sedimentology, 63: 2217-2252. [114] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [115] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Scientific Publication,1-447. [116] Vail P R,Mitchum J R M,Thompson Ⅲ S. 1977. Seismic stratigraphy and global changes of sea level,part 3: Relative changes of sea level from coastal onlap. In: Payton C E. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 63-81. [117] van Wagoner J C,Mitchum R M,Campion K M J,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores and outcrops. AAPG Methods in Exploration, 7: 1-55 [118] Vulpius S,Kiessling W.2018. New constraints on the last aragonite-calcite sea transition from Early Jurassic ooids. Facies, 64: 1-9. [119] Whitton B A,Mateo P.2012. Rivulariaceae. In: Whitton B A. Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,561-591. [120] Wilkinson B H,Owen R M,Carrol A R.1985. Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology, 55: 171-183. [121] Woo J,Chough S K,Han Z.2008. Chambers of epiphyton thalli in microbial buildups,Zhangxia Formation(Middle Cambrian),Shandong Province. Palaios, 23: 55-64. [122] Woo J,Chough S K.2010. Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton. Sedimentary Geology, 229: 1-8. [123] Woods A D.2013. Microbial ooids and cortoids from the Lower Triassic(Spathian)Virgin Limestone,Nevada,USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105: 91-101. [124] Xiao E Z,Latif K,Riaz M,Qin Y L,Wang H.2018. Calcified microorganisms bloom in Furongian of the North China Platform: Evidence from microbialitic-bioherm in Qijiayu section,Hebei. Open Geosciences, 10: 250-260. [125] Yan Z,Liu J B,Ezaki Y,Adachi N,Du S X.2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section,Shandong Province,northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 474: 45-57. |