古地理学报 ›› 2025, Vol. 27 ›› Issue (4): 937-949. doi: 10.7605/gdlxb.2025.083

• 新技术及新方法 • 上一篇    下一篇

基于BSMOTE-SVM的细粒沉积岩岩相智能预测: 以松辽盆地青山口组一段为例*

唐佰强1,2(), 孟庆涛1,2(), 杨亮3, 胡菲1,2, 谭悦4, 邢济麟3, 刘招君1,2, 张恩威1,2, 董秦玮1,2   

  1. 1 吉林大学地球科学学院,吉林长春 130061
    2 吉林省油页岩与共生能源矿产重点实验室,吉林长春 130061
    3 中国石油吉林油田公司勘探开发研究院,吉林松原 138000
    4 大庆钻探工程有限公司地质录井公司,黑龙江大庆 163000
  • 收稿日期:2025-04-08 修回日期:2025-05-12 出版日期:2025-08-01 发布日期:2025-07-30
  • 通讯作者: 孟庆涛,女,1984年生,博士,教授,博士生导师,主要从事沉积学、石油地质学、非常规油气勘探与开发方面的研究。E-mail: mengqt@jlu.edu.cn。
  • 作者简介:

    唐佰强,男,1997年生,博士研究生,主要从事测井地质学、机器学习与沉积学等研究。E-mail:

  • 基金资助:
    *吉林省自然科学基金项目(20230101081JC); 中国石油吉林油田分公司项目(JS2022-W-13-JZ-78-92)

Intelligent prediction of fine-grained sedimentary lithofacies based on BSMOTE-SVM: a case study of the Member 1 of Qingshankou Formation in Songliao Basin

TANG Baiqiang1,2(), MENG Qingtao1,2(), YANG Liang3, HU Fei1,2, TAN Yue4, XING Jilin3, LIU Zhaojun1,2, ZHANG Enwei1,2, DONG Qinwei1,2   

  1. 1 College of Earth Sciences,Jilin University,Changchun 130061,China
    2 Key-Lab for Oil Shale and Paragenetic Energy Minerals,Changchun 130061,China
    3 Exploration and Development Research Institute of Jilin Oilfield Company,PetroChina,Jinlin Songyuan,138000,China
    4 Geological Logging Company of Daqing Drilling Engineering Company,Heilongjiang Daqing,163000,China
  • Received:2025-04-08 Revised:2025-05-12 Online:2025-08-01 Published:2025-07-30
  • Contact: MENG Qingtao,born in 1984,is a Ph.D. and professor. She is mainly engaged in sedimentology,petroleum geology and exploration and development of unconventional oil and gas. E⁃mail: mengqt@jlu.edu.cn.
  • About author:

    TANG Baiqiang,born in 1997,is a Ph.D. candidate. He is mainly engaged in logging geology,machine learning and sedimentology. E-mail:

  • Supported by:
    Project of Natural Science Foundation Jilin Province(20230101081JC); Project of CNPC Jilin Oilfield Branch Company(JS2022-W-13-JZ-78-92)

摘要:

细粒沉积岩岩相的空间展布特征是页岩油勘探的关键研究内容。由于高成本且稀缺的取心井限制了岩相的分析,测井预测岩相的工作变得尤为重要。以松辽盆地青山口组一段(青一段)为例,建立了“岩性+矿物+TOC+沉积构造”的岩相划分方案,确定了7类岩相。结合6条常规测井曲线形成了X8井的岩相—测井数据库。综合使用机器学习中的随机森林(RF)、XGBoost和支持向量机(SVM)3种模型评价岩相的预测效果,并确定SVM是最优分类模型,使用BSMOTE处理岩相样本的分类不平衡问题并将处理后的数据输入到SVM模型,建立了BSMOTE-SVM的岩相预测的组合模型。BSMOTE-SVM的预测效果最佳,准确率(A)、精确率(P)、召回率(R)和F1依次分别为86.49%86.60%86.49%86.31%。该组合模型可快速且精准的预测多井的岩相,并确定了松辽盆地长岭凹陷青一段的岩相分布,为下一步页岩油有利富集区的优选提供了一定指导依据。

关键词: 细粒沉积岩, 岩相, 测井预测, BSMOTE-SVM, 青山口组, 松辽盆地

Abstract:

The spatial distribution of lithofacies of fine-grained sedimentary rocks is a critical research focus in shale oil exploration. Due to the high cost and scarcity of core wells,which constrain direct lithofacies analysis,logging-based prediction has become increasingly essential. Taking the First Member of the Qingshankou Formation in the Songliao Basin as a case study,this research establishes a lithofacies classification scheme integrating lithology,mineral composition,total organic carbon(TOC),and sedimentary structures,resulting in the identification of seven distinct lithofacies types. A lithofacies-well log dataset was constructed for Well X8 using six conventional logging curves. Three machine learning algorithms—Random Forest(RF),eXtreme Gradient Boosting(XGBoost),and Support Vector Machine(SVM)—were employed to evaluate classification performance,with SVM identified as the optimal model. To address class imbalance in the training data,the BSMOTE(Borderline Synthetic Minority Oversampling Technique)algorithm was applied. The balanced dataset was then used to develop a hybrid lithofacies prediction model: BSMOTE-SVM. The BSMOTE-SVM model demonstrated the best predictive performance,achieving an accuracy of 86.49%,precision of 86.60%,recall of 86.49%,and F1-score of 86.31%. This integrated model enables rapid and accurate lithofacies prediction across multiple wells and delineates the lithofacies distribution in Member 1 of the Qingshankou Formation in the Changling sag,offering a robust foundation for selecting favorable shale oil enrichment zones in future exploration.

Key words: fine-grained sedimentary rocks, lithofacies, logging prediction, BSMOTE-SVM, Qingshankou Formation, Songliao Basin

中图分类号: