[1] |
龚承林, 齐昆, 徐杰, 刘喜停, 王英民. 2021. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 231-252.
|
|
[Gong C L, Qi K, Xu J, Liu X T, Wang Y M. 2021. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes. Acta Sedimentologica Sinica, 39(1): 231-252 ]
|
[2] |
龚承林, Ronald J. Steel, 彭旸, 王英民, 李东伟. 2022. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292-318.
|
|
[Gong C L, Steel R J, Peng Y, Wang Y M, Li D W. 2022. Major advances in deep-marine siliciclastic sequence stratigraphy,1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292-318 ]
|
[3] |
林畅松, 夏庆龙, 施和生, 周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20.
doi: 10.13745/j.esf.2015.01.002
|
|
[Lin C S, Xia Q L, Shi H S, Zhou X H. 2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9-20 ]
|
[4] |
徐长贵, 杜晓峰. 2017. 陆相断陷盆地源-汇理论工业化应用初探: 以渤海海域为例. 中国海上油气, 29(4): 9-18.
|
|
[Xu C G, Du X F. 2017. Industrial application of source-to-sink theory in continental rift basin: a case study of Bohai Sea area. China Offshore Oil and Gas, 29(4): 9-18 ]
|
[5] |
徐长贵, 龚承林. 2023. 从层序地层走向源-汇系统的储层预测之路. 石油与天然气地质, 44(3): 521-538.
|
|
[Xu C G, Gong C L. 2023. Predictive stratigraphy: from sequence stratigraphy to source-to-sink system. Oil & Gas Geology, 44(3): 521-538 ]
|
[6] |
朱红涛, 徐长贵, 朱筱敏, 曾洪流, 姜在兴, 刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870.
|
|
[Zhu H T, Xu C G, Zhu X M, Zeng H L, Jiang Z X, Liu K Y. 2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851-1870 ]
|
[7] |
Blum M, Rogers K, Gleason J, Najman Y, Cruz J, Fox L. 2018. Allogenic and autogenic signals in the stratigraphic record of the deep-sea Bengal fan. Scientific Reports,8: 7973.
|
[8] |
Carvajal C R, Steel R J. 2006. Thick turbidite successions from supply-dominated shelves during sea-level highstand. Geology,34: 665.
|
[9] |
Carvajal C, Steel R. 2009. Shelf-edge architecture and bypass of sand to deep water: influence of shelf-edge processes,sea level,and sediment supply. Journal of Sedimentary Research,79: 652-672.
|
[10] |
Carvajal C, Steel R, Petter A. 2009. Sediment supply: the main driver of shelf-margin growth. Earth-Science Reviews,96: 221-248.
|
[11] |
Catuneanu O. 2022. Principles of Sequence Stratigraphy. 2nd edition. San Diego: Elsevier Science,93-115.
|
[12] |
Catuneanu O, Abreu V, Bhattacharya J P, Blum M D, Dalrymple R W, Eriksson P G, Fielding C R, Fisher W L, Galloway W E, Gibling M R, Giles K A, Holbrook J M, Jordan R, St C Kendall C G, Macurda B, Martinsen O J, Miall A D, Neal J E, Nummedal D, Pomar L, Posamentier H W, Pratt B R, Sarg J F, Shanley K W, Steel R J, Strasser A, Tucker M E, Winker C. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews,92: 1-33.
|
[13] |
Chen S, Steel R J, Dixon J F, Osman A. 2014. Facies and architecture of a tide-dominated segment of the Late Pliocene Orinoco Delta(Morne L’Enfer Formation)SW Trinidad. Marine and Petroleum Geology,57: 208-232.
|
[14] |
Doughty-Jones G, Mayall M, Lonergan L. 2017. Stratigraphy,facies,and evolution of deep-water lobe complexes within a salt-controlled intraslope minibasin. AAPG Bulletin,101: 1879-1904.
|
[15] |
Fatoke O A, Bhattacharya J P. 2010. Controls on depositional systems and sequence stratigraphy of the Pliocene-Pleistocene strata of eastern Niger Delta Nigeria. Search and Discovery Article,10220.
|
[16] |
Fisher W L, Galloway W E, Steel R J, Olariu C, Kerans C, Mohrig D. 2021. Deep-water depositional systems supplied by shelf-incising submarine canyons: recognition and significance in the geologic record. Earth-Science Reviews,214: 103531.
|
[17] |
Fongngern R, Olariu C, Steel R J, Krézsek C. 2016. Clinoform growth in a Miocene,Para-Tethyan deep lake basin: thin topsets,irregular foresets and thick bottomsets. Basin Research,28: 770-795.
|
[18] |
Gong C L, Wang Y M, Steel R J, Olariu C, Xu Q, Liu X, Zhao Q. 2015. Growth styles of shelf-margin clinoforms: Prediction of sand-and sediment-budget partitioning into and across the shelf. Journal of Sedimentary Research,85: 209-229.
|
[19] |
Gong C L, Steel R J, Wang Y M, Lin C S, Olariu C. 2016. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas. Earth-Science Reviews,154: 72-101.
|
[20] |
Howlett D M, Gawthorpe R L, Ge Z Y, Rotevatn A, Jackson C A. 2021. Turbidites,topography and tectonics: Evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin,offshore Angola. Basin Research,33: 1076-1110.
|
[21] |
Johannessen E P, Steel R J. 2005. Clinoforms and their exploration significance for deepwater sands. Basin Research,17: 521-550.
|
[22] |
Kertznus V, Kneller B. 2009. Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research,21: 738-758.
|
[23] |
Martinsen O J, Sømme T O, Thurmond J B, Helland-Hansen W, Lunt I. 2010. Source-to-sink systems on passive margins: Theory and practice with an example from the Norwegian continental margin. Geological Society,London,Petroleum Geology Conference Series,7: 913-920.
|
[24] |
McHargue T R, Hodgson D M, Shelef E. 2021. Architectural diversity of submarine lobate deposits. Frontiers in Earth Science,9: 697170.
|
[25] |
Muto T, Steel R J. 2002. In defense of shelf-edge delta development during falling and lowstand of relative sea level. The Journal of Geology,110: 421-436.
|
[26] |
Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Research,25: 4-29.
|
[27] |
Paumard V, Bourget J, Payenberg T, Ainsworth R B, George A D, Lang S, Posamentier H W, Peyrot D. 2018. Controls on shelf-margin architecture and sediment partitioning during a syn-rift to post-rift transition: Insights from the barrow group(northern carnarvon basin,north west shelf,Australia). Earth-Science Reviews,177: 643-677.
|
[28] |
Pellegrini C, Patruno S, Helland-Hansen W, Steel R J, Trincardi F. 2020. Clinoforms and clinothems: fundamental elements of basin infill. Basin Research,32: 187-205.
|
[29] |
Petter A L, Steel R J, Mohrig D, Kim W, Carvajal C. 2013. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record. Geological Society of America Bulletin,125: 578-593.
|
[30] |
Posamentier H W, Jervey M T, Vail P R. 1988. Eustatic controls on clastic deposition i—Conceptual framework. Sea-Level Changes—An Integrated Approach: SEPM(Society for Sedimentary Geology): 109-124.
|
[31] |
Romans B W, Castelltort S, Covault J A, Fildani A, Walsh J P. 2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews,153: 7-29.
|
[32] |
Sømme T O, Helland-Hansen W, Granjeon D. 2009. Impact of eustatic amplitude variations on shelf morphology,sediment dispersal,and sequence stratigraphic interpretation: icehouse versus greenhouse systems. Geology,37: 587-590.
|
[33] |
Steel R, Olsen T. 2002. Clinoforms,clinoform trajectories and deepwater sands.
|
[34] |
Takashima R, Nishi H, Huber B, Leckie R M. 2006. Greenhouse world and the Mesozoic Ocean. Oceanography,19: 82-92.
|
[35] |
Yoon S H, Park S J, Chough S K. 2002. Evolution of sedimentary basin in the southwestern ulleung basin margin: sequence stratigraphy and geologic structures. Geosciences Journal,6: 149-159.
|