[1] |
曹淞, 冯晅, 鹿琪, 曾昭发, 朱如凯, 白斌. 2016. 探地雷达在古河道砂岩体沉积储层刻画中的应用. 世界地质, 35(1): 223-234.
|
|
[Cao S, Feng X, Lu Q, Zeng Z F, Zhu R K, Bai B. 2016. Application of GPR in depicting sedimentary reservoir of paleochannel sandstone bodies. World Geology, 35(1): 223-234 ]
|
[2] |
程岳宏, 于兴河, 刘玉梅, 赵厚祥, 李胜利, 谭程鹏, 戴明建, 李攀. 2012. 正常曲流河道与深水弯曲水道的特征及异同点. 地质科技情报, 31(1): 72-81.
|
|
[Cheng H Y, Yu X H, Liu Y M, Zhao H X, Li S L, Tan C P, Dai J M, Li P. 2012. Characteristics,similarities and differences of fluvial and deep-water sinuous channels. Bulletin of Geological Science and Technology, 31(1): 72-81 ]
|
[3] |
耿峻岭, 高玲, 陈建江, 杜刚. 2005. 新疆呼图壁河流域水文特征分析. 干旱区研究, 22(3): 371-376.
|
|
[Geng J L, Gao L, Chen J J, Du G. 2005. Analysis on the hydrological characteristics in the Hutubi River Basin,Xinjiang. Arid Zone Research, 22(3): 371-376 ]
|
[4] |
胡光义, 陈飞, 范廷恩, 孙立春, 赵春明, 高云峰, 王晖, 宋来明. 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592.
|
|
[Hu G Y, Chen F, Fan T E, Sun L C, Zhao C M, Gao Y F, Wang H, Song M L. 2014. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S Oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592 ]
|
[5] |
黄建廷, 李浩, 潘广明, 吴金涛, 黄奇, 赵澄圣. 2022. 利用保持储层结构的地震反演表征曲流河储层构型. 中国海上油气, 34(5): 94-100.
|
|
[Huang J T, Li H, Pan G M, Wu J T, Huang Q, Zhao C S. 2022. Meandering river reservoir architecture characterization based on seismic inversion maintaining reservoir structure. China Offshore Oil and Gas, 34(5): 94-100 ]
|
[6] |
孔凡立, 李霁, 邹乐君, 沈晓华, 吴文渊, 苏楠. 2012. 基于Haar小波变换的渐弃型废弃河道相识别. 浙江大学学报(工学版), 46(3): 568-576.
|
|
[Kong L F, Li J, Zou L J, Shen X H, Wu W Y, Su N. 2012. Haar wavelet transformation-based gradually abandoned channel facies identification. Journal of Zhejiang University(Engineering Science), 46(3): 568-576 ]
|
[7] |
李华, 何幼斌, 王振奇. 2011. 深水高弯度水道—堤岸沉积体系形态及特征. 古地理学报, 13(2): 139-149.
|
|
[Li H, He Y B, Wang Z Q. 2011. Morphology and characteristics of deep water high sinuous channel-levee system. Journal of Palaeogeography(Chinese Edition), 13(2): 139-149 ]
|
[8] |
李胜利, 于兴河, 姜涛, 梁星如, 苏东旭. 2017. 河流辫—曲转换特点与废弃河道模式. 沉积学报, 35(1): 1-9.
|
|
[Li S L, Yu X H, Jiang T, Liang X R, Su X D. 2017. Meander-braided transition features and abandoned channel patterns in fluvial environment. Acta Sedimentologica Sinica, 35(1): 1-9 ]
|
[9] |
李胜利, 马水平, 周练武, 黄晓娣, 韩波, 李航. 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 47(11): 3960-3976.
|
|
[Li S L, Ma S P, Zhou L W, Huang X D, Han B, Li H. 2022. Main influencing factors of braided-meander transition and coexistence characteristics and implications of ancient fluvial sedimentary environment reconstruction. Earth Science, 47(11): 3960-3976 ]
|
[10] |
马世忠, 吕桂友, 闫百泉, 范广娟. 2008. 河道单砂体“建筑结构控三维非均质模式”研究. 地学前缘, 15(1): 57-64.
|
|
[Ma S Z, Lü G Y, Yan B Q, Fan G J. 2008. Research on three-dimensional heterogeneous model of channel sandbody controlled by architecture. Earth Science Frontiers, 15(1): 57-64 ]
|
[11] |
努尔兰·哈再孜. 2022. 新疆额尔齐斯河南湾水文站开河规律探讨及武开河成因分析. 水文, 42(1): 80-84.
|
|
[Nuerlan H. 2022. Discussion on the river break law and mechanical break-up of Nan Wan station at Irtysh River in Xinjiang. Journal of China Hydrology, 42(1): 80-84 ]
|
[12] |
齐云龙, 陈宁生, 秦启荣, 张海力. 2007. 砂岩及其坡积物结构面的地质雷达图像解译: 以超强地面耦合50MHz雷达天线探测为例. 成都理工大学学报(自然科学版), 34(1): 97-102.
|
|
[Qi Y L, Chen N S, Qin Q R, Zhang H L. 2007. Using ground-penetrating radar image to interpret the structural interface in a sandstone and slope wash area: taking to use the rough terrain 50MHz antenna of GPR antenna for surveying for example. Journal of Chengdu University of Technology(Science & Technology Edition), 34(1): 97-102 ]
|
[13] |
秦国省, 胡文瑞, 宋新民, 赵亮, 陈玉琨, 田雅洁, 匡明. 2018. 砾质辫状河构型及隔夹层分布特征: 以准噶尔盆地西北缘八道湾组露头为例. 中国矿业大学学报, 47(5): 1008-1020.
|
|
[Qin G S, Hu W R, Song X M, Zhao L, Chen Y K, Tian Y J, Kuang M. 2018. Gravel braided river architecture and inter-layers distribution: a case study of Jurassic Badaowan formation outcrop in the northwest of Junggar basin. Journal of China University of Mining & Technology, 47(5): 1008-1020 ]
|
[14] |
石雨昕, 高志勇, 周川闽, 翟弈程, 樊小容, 冯佳睿. 2019. 新疆博斯腾湖北缘现代冲积扇与扇三角洲平原分支河流体系的沉积特征与意义. 石油学报, 40(5): 542-556.
doi: 10.7623/syxb201905004
|
|
[Shi Y X, Gao Z Y, Zhou C M, Zhai Y C, Fan X R, Feng J R. 2019. Sedimentary characteristics and significance of distributive fluvial system of modern alluvial fan and fan delta plain in the northern margin of Bosten lake,Xinjiang. Acta Petrolei Sinica, 40(5): 542-556 ]
doi: 10.7623/syxb201905004
|
[15] |
谭绍泉, 刘泰生, 徐锦玺, 张庆淮, 邸志新. 2003. 地质雷达技术在表层结构调查中的应用与研究. 石油物探, 42(1): 59-62,67.
|
|
[Tan S Q, Liu T S, Xu J X, Zhang Q Y, Di Z X. 2003. Application of ground penetrating radar in surface seismic and geologic survey. Geophysical Prospecting for Petroleum, 42(1): 59-62,67 ]
|
[16] |
王昊, 崔鹏, Carling Paul A. 2021. 高能洪水沉积研究综述. 地学前缘, 28(2): 140-167.
doi: 10.13745/j.esf.sf.2020.9.17
|
|
[Wang H, Cui P, Carling P A. 2021. The sedimentology of high-energy outburst flood deposits: an overview. Earth Science Frontiers, 28(2): 140-167 ]
doi: 10.13745/j.esf.sf.2020.9.17
|
[17] |
王家豪, 周江羽, 杨香华, 陈振林. 2018. 砾质曲流河的沉积特点及成因: 以秦皇岛大石河为例. 地球科学, 43(S1): 277-286.
|
|
[Wang J H, Zhou J Y, Yang X H, Chen Z L. 2018. Sedimentary characteristics and geneses of pebbly meandering river: a case from Dashihe River in Qinghuangdao Area. Earth Science, 43(S1): 277-286 ]
|
[18] |
徐琪, 沈含笑, 董少春, 史宇坤, 樊隽轩. 2023. 地质露头与标本的三维数字化现状与展望. 高校地质学报, 29(3): 403-418.
|
|
[Xu Q, Shen H X, Dong S C, Shi Y K, Fan J X. 2023. 3D Digitization of geological outcrops and specimens: status and prospects. Geological Journal of China Universities, 29(3): 403-418 ]
|
[19] |
姚宗全, 德勒恰提·加娜塔依, 张明玉, 孙乐, 王文峰, 潘品百, 黄博超. 2020. 准噶尔盆地呼图壁河侏罗系齐古组点坝砂体叠迁样式及演化特征. 地质学报, 94(5): 1578-1590.
|
|
[Yao Z Q, Deleqiati J, Zhang M Y, Sun L, Wang W F, Pan P B, Huang B C. 2020. The lateral accretion styles and its evolution of point bar for the Qigu Formation of Jurassic in Junggar basin Toutunhe river. Acta Geologica Sinica, 94(5): 1578-1590 ]
|
[20] |
岳大力, 吴胜和, 刘建民. 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 25(4): 99-103.
|
|
[Yue D L, Wu S H, Liu J M. 2007. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica, 25(4): 99-103 ]
|
[21] |
岳大力, 胡光义, 李伟, 范廷恩, 胡嘉靖, 乔慧丽. 2018. 井震结合的曲流河储层构型表征方法及其应用: 以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109.
|
|
[Yue D L, Hu G Y, Li W, Fan T E, Hu J J, Qiao H L. 2018. Meandering fluvial reservoir architecture characterization method and application by combining well logging and seismic data: a case study of QHD32- 6 oilfield. China Offshore Oil and Gas, 30(1): 99-109 ]
|
[22] |
张宪国, 储飞跃, 黄德榕, 董春梅, 刘晓宇. 2022. 二维卷积神经网络驱动的砂地比地震预测方法. 中国矿业大学学报, 51(6): 1128-1137.
|
|
[Zhang X G, Chu F Y, Huang D R, Dong C M, Liu X Y. 2022. 2D convolutional neural network driven sandstone ratio prediction method with seismic data. Journal of China University of Mining & Technology, 51(6): 1128-1137 ]
|
[23] |
钟建华, 刘云田, 姜波, 管全俊, 张跃忠. 2002. 柴达木盆地英雄岭曲流河边滩的沉积学特征. 石油学报, 23(3): 43-47.
doi: 10.7623/syxb200203009
|
|
[Zhong J H, Liu Y T, Jiang B, Guan Q J, Zhang Y Z. 2002. Sedimentary features of the point bar in intermane(seasonal)meandering stream-taking the meandering stream developed in Hero Hill of Qaidam Basin as an example. Acta Petrolei Sinica, 23(3): 43-47 ]
doi: 10.7623/syxb200203009
|
[24] |
周新茂, 高兴军, 季丽丹, 陈建阳, 王兴明, 徐薇薇, 张晶. 2010. 曲流河废弃河道的废弃类型及机理分析. 西安石油大学学报(自然科学版), 25(1): 19-23.
|
|
[Zhou M X, Gao X J, Ji L D, Chen J Y, Wang X M, Xu W W, Zhang J. 2010. Analysis on the types and the sedimentation mechanism of the abandoned channel in meandering river. Journal of Xi’an Shiyou University(Natural Science Edition), 25(1): 19-23 ]
|
[25] |
Bathurst J C, Benson I A, Valentine E M, Nalluri C. 2002. Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surface Processes and Landforms, 27(6): 659-665.
|
[26] |
Beauprêtre S, Manighetti I, Garambois S, Dominguez S. 2013. Stratigraphic architecture and fault offsets of alluvial terraces at Te Marua,Wellington Fault,New Zealand,revealed by pseudo-3D GPR investigation. Journal of Geophysical Research-Solid Earth, 118(8): 4564-4585.
|
[27] |
Bridge J S, Alexander J, Collier R E L, Gawthorpe R L, Jarvis J. 1995. Ground-penetrating radar and coring used to study the large-scale structure of point-bar deposits in three dimensions. Sedimentology, 42(6): 839-852.
|
[28] |
Dara R, Kettridge N, Rivett M O, Krause S, Gomez O D. 2019. Identification of floodplain and riverbed sediment heterogeneity in a meandering UK lowland stream by ground penetrating radar. Journal of Applied Geophysics,171: 15.
|
[29] |
Davies N S, Gibling M R. 2010. Paleozoic vegetation and the Siluro-Devonian rise of fluvial lateral accretion sets. Geology, 38(1): 51-54.
|
[30] |
Deb M, Das D, Uddin M. 2012. Evaluation of meandering characteristics using RS & GIS of Manu River. Journal of Water Resource Protection, 4(3): 163-171.
|
[31] |
Gizzi F T, Leucci G. 2018. Global research patterns on ground penetrating radar(GPR). Surveys in Geophysics, 39(6): 1039-1068.
|
[32] |
Gu Z K, Shi C X, Yang H, Yao H F. 2019. Analysis of dynamic sedimentary environments in alluvial fans of some tributaries of the upper Yellow River of China based on ground penetrating radar(GPR)and sediment cores. Quaternary International,509: 30-40.
|
[33] |
Guo W, Dong C M, Lin C Y, Zhang T, Zhao Z X, Li J. 2022. 3D sedimentary architecture of sandy braided river,based on outcrop,unmanned aerial vehicle and ground penetrating radar data. Minerals, 12(6): 19.
|
[34] |
Hagstrom C A, Leckie D A, Smith M G. 2018. Point bar sedimentation and erosion produced by an extreme flood in a sand and gravel-bed meandering river. Sedimentary Geology,377: 1-16.
|
[35] |
Hickin E J. 1974. The eevelopment of meanders in natural river-channels. American Journal of Science, 274(4): 414-442.
|
[36] |
Hickin A S, Kerr B, Barchyn T E, Paulen R C. 2009. Using ground-penetrating radar and capacitively coupled resistivity to investigate 3-D fluvial architecture and grain-size distribution of a gravel floodplain in Northeast British Columbia,Canada. Journal of Sedimentary Research, 79(5-6): 457-477.
|
[37] |
Himi M, Armendariz A, Teira L, González J, Ibáñez J, Haïdar B M, Casas A. 2016. Geophysical and archaeological evidences of buried Epipalaeolithic,Neolithic,Bronze Age and Roman Architecture in West-Central Syria. Archaeological Prospection, 23(4): 273-285.
|
[38] |
Hugenholtz C H, Paulen R C, Wolfe S A. 2007. Ground-penetrating-radar Investigation of Relict channel bars of the Meander River Spillway,Northern Alberta. Geological Survey of Canada.
|
[39] |
Hugenschmidt J. 2000. Railway track inspection using GPR. Journal of Applied Geophysics, 43(2-4): 147-155.
|
[40] |
Korus J T, Joeckel R M, Tuckers S T. 2020. Genesis of giant,bouldery bars in a Miocene gravel-bed river: insights from outcrop sedimentology,UAS-SfM photogrammetry,and GPR. Journal of Sedimentary Research, 90(1): 27-47.
|
[41] |
Kostic B, Aigner T. 2007. Sedimentary architecture and 3D ground-penetrating radar analysis of gravelly meandering river deposits(Neckar Valley,SW Germany). Sedimentology, 54(4): 789-808.
|
[42] |
Kowalsky M B, Dietrich P, Teutsch G, Rubin Y. 2001. Forward modeling of ground-penetrating radar data using digitized outcrop images and multiple scenarios of water saturation. Water Resources Research, 37(6): 1615-1625.
|
[43] |
Lahouar S, Al-Qadi I L. 2008. Automatic detection of multiple pavement layers from GPR data. Ndt & E International, 41(2): 69-81.
|
[44] |
Lunt I A, Bridge J S, Tye R S, Bridge J S, Hyndman D W. 2004. Development of a 3-D depositional model of braided-river gravels and sands to improve aquifer characterization. SEPM Society for Sedimentary Geology.
|
[45] |
Malagodi S, Orlando L, Piro S, Rosso F. 1996. Location of archaeological structures using GPR method: three-dimensional data acquisition and radar signal processing. Archaeological Prospection, 3(1): 13-23.
|
[46] |
Nanson G C. 1980. Point-bar and floodplain formation of the meandering Beatton River,northeastern British-Columbia,Canada. Sedimentology, 27(1): 3-29.
|
[47] |
Neal A. 2004. Ground-penetrating radar and its use in sedimentology: principles,problems and progress. Earth-Science Reviews, 66(3-4): 261.
|
[48] |
Nelson P A, Morgan J A. 2018. Flume experiments on flow and sediment supply controls on gravel bedform dynamics. Geomorphology,323: 98-105.
|
[49] |
Ni X B, Zhang J J, Chen K, Zhang G Z, Wang B L, Liu Z F, Lin Y. 2023. Geostatistical inversion method based on seismic waveform similarity. Applied Geophysics, 20(2): 186-197.
|
[50] |
Roksandić M M. 1978. Seismic facies analysis concepts. Geophysical Prospecting, 26(2): 383-398.
|
[51] |
Rucsandra M C, Kristian S, Robert B S, John B T, George A M, Wang D M, Steven S, Craig B F, Ari M. 2001. Detailed internal architecture of a fluvial channel sandstone determined from outcrop,cores,and 3-D ground-penetrating radar: example from the middle Cretaceous Ferron Sandstone,east-central Utah. Geoscience World, 85(9): 1583-1608.
|
[52] |
Sangree J B, Widmier J M. 1979. Interpretation of depositional facies from seismic data. Geophysics, 44(2): 131-160.
|
[53] |
Shan X, Yu X H, Clift P D, Tan C P, Jin J N, Li M T, Li W. 2015. The ground penetrating radar facies and architecture of a paleo-spit from Huangqihai Lake,North China: implications for genesis and evolution. Sedimentary Geology,323: 1-14.
|
[54] |
Skelly R L, Bristow C S, Ethridge F G. 2003. Architecture of channel-belt deposits in an aggrading shallow sandbed braided river: the lower Niobrara River,northeast Nebraska. Sedimentary Geology, 158(3): 249-270.
|
[55] |
Smith G H S, Ashworth P J, Best J L, Lunt I A, Orfeo O. 2009. The sedimentology and alluvial architecture of a large braid bar,Rio Parana,Argentina. Journal of Sedimentary Research, 7-8(79): 629-642.
|
[56] |
Srisunthon P, Choowong M. 2019. Quaternary meandering evolution and architecture of a point bar in the Mun River on the sandstone-dominated Khorat Plateau from northeastern Thailand. Quaternary International,525: 25-35.
|
[57] |
Van D R L, Schlager W. 2000. Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analyses. Sedimentology, 47(2): 435-449.
|
[58] |
Vandenberghe J, Overmeeren R. 1999. Ground penetrating radar images of selected fluvial deposits in the Netherlands. Sedimentary Geology, 128(3): 245-270.
|
[59] |
Wooldridge C L, Hickin E J. 2005. Radar architecture and evolution of channel bars in wandering gravel-bed rivers: fraser and Squamish Rivers,British Columbia,Canada. Journal of Sedimentary Research, 75(5): 844-860.
|
[60] |
Yao Z Q, Yu X H, Shan X, Li S L, Li S L, Li Y L, Tan C P, Chen H L. 2018. Braided-meandering system evolution in the rock record: implications for climate control on the Middle-Upper Jurassic in the southern Junggar Basin,North-West China. Geological Journal, 53(6): 2710-2731.
|
[61] |
Yue D L, Li W, Wang W R, Hu G Y, Shen B B, Wang W F, Zhang M L, Hu J J. 2019. Analyzing the architecture of point bar of meandering fluvial river using ground penetration radar: a case study from Hulun Lake Depression,China. Interpretation, 7(2): 437-454.
|
[62] |
Zuk T. 2011. Acquisition,3-D Display and Interpretation of GPR Data in Fluvial Sedimentology. Masteral dissertation of University of Birmingham,
|