古地理学报 ›› 2025, Vol. 27 ›› Issue (4): 924-936. doi: 10.7605/gdlxb.2025.064

• 新技术及新方法 • 上一篇    下一篇

碳酸盐岩岩心图像生物扰动强度智能识别方法研究*

芦碧波1(), 何佳康1, 牛永斌2(), 沈文啟1, 姚康为1   

  1. 1 河南理工大学计算机科学与技术学院,河南焦作 454003
    2 河南省煤系非常规资源成藏与开发重点实验室,河南理工大学资源环境学院,河南焦作 454003
  • 收稿日期:2025-01-07 修回日期:2025-02-25 出版日期:2025-08-01 发布日期:2025-07-30
  • 通讯作者: 牛永斌,男,1980年生,博士,河南理工大学资源环境学院教授,主要从事应用遗迹学与沉积学研究工作。E-mail: niuyongbin@hpu.edu.cn。
  • 作者简介:

    芦碧波,男,1978年生,博士,河南理工大学计算机科学与技术学院教授,主要从事人工智能与图像处理研究工作。E-mail:

  • 基金资助:
    *国家自然科学基金项目(41472104); 国家自然科学基金项目(42272178)

Intelligent identification methods for bioturbation intensity in carbonate rock core images

LU Bibo1(), HE Jiakang1, NIU Yongbin2(), SHEN Wenqi1, YAO Kangwei1   

  1. 1 School of Computer Science and Technology,Henan Polytechnic University,Henan Jiaozuo 454003,China
    2 Henan Key Laboratory of Coal Measure Unconventional Resources Accumulation and Exploitation, School of Resources and Environment, Henan Polytechnic University, Henan Jiaozuo 454003, China
  • Received:2025-01-07 Revised:2025-02-25 Online:2025-08-01 Published:2025-07-30
  • Contact: NIU Yongbin,born in 1980,is a professor at School of Resources and Environment,Henan Polytechnic University. He is mainly engaged in applied ichnology and sedimentolgy. E⁃mail: niuyongbin@hpu.edu.cn.
  • About author:

    LU Bibo,born in 1978,is a professor at the School of Computer Science and Technology,Henan Polytechnic University. He is mainly engaged in artificial intelligence and image processing. E-mail:

  • Supported by:
    National Natural Science Foundation of China(41472104); National Natural Science Foundation of China(42272178)

摘要:

生物扰动是(古)生物在生命活动过程中在沉积物表面或内部形成的各种沉积结构或沉积构造,在分析沉积地层古环境、预测其分布规律、评价烃源岩生烃能力和盖层封堵能力、揭示(古)生物对油气储集层的改造机制和改造效应等方面具有重要应用。传统生物扰动强度分析主要依靠人工识别后对照生物扰动指数图版进行半定量划分,因此受主观因素影响大,执行效率低且结果容易产生较大误差。文中通过引入EMA(Efficient Multi-Scale Attention)注意力机制到ResNet-50模型中,提出了一种加入注意力机制的残差网络模型(Res-EMANet)。该模型在训练过程中采用随机梯度下降算法(Stochastic Gradient Descent,SGD),初始学习率为 0.01,权重衰减参数为 0.0001;批次大小设置为16,共执行了300个轮次。从准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1 分数(F1-score)和混淆矩阵(Confusion Matrix)等5个方面评价了模型结构改进对模型性能的影响,并利用塔里木盆地奥陶系16口取心井3028张含不同等级生物扰动的岩心照片数据集进行了模型检验,结果表明: (1)该模型能够准确划分岩心数字图像上0~5级别的生物扰动强度,准确率高达91%,显著优于传统人工方法和已有的ResNet-50模型。(2)该模型在提升生物扰动等级识别准确度的同时,有效降低了对专家知识的依赖和人工评估生物扰动等级的劳动强度及个人主观性的影响,在生物扰动特征的自动化、智能化和定量化分析等方面展现了显著的应用优势。本研究为生物扰动程度评估和识别的自动化处理提供了一款高效可靠的定量化分析工具,这对油气勘探领域的沉积学和古生物学研究具有重要意义。

关键词: 生物扰动, 深度学习, 图像分类, 碳酸盐岩储集层, 奥陶系, 塔河油田

Abstract:

Bioturbation refers to various sedimentary textures or structures formed on sediment surfaces or within sediments due to biological activity. It plays a crucial role in analyzing paleoenvironmental conditions in sedimentary strata,predicting distribution patterns,evaluating the hydrocarbon generation capacity of source rocks,assessing the sealing capacity of caprocks,and revealing the mechanisms and effects of bioturbation on hydrocarbon reservoirs. Traditional methods for analyzing bioturbation intensity mainly relies on manual identification,followed by semi-quantitative classification using bioturbation index charts. This approach is highly subjective,inefficient,and prone to large errors. In this paper,we proposed a residual network model that incorporates an attention mechanism(Res-EMANet)by integrating the Efficient Multi-Scale Attention(EMA)mechanism into the ResNet-50 model. During training,the model employs stochastic gradient descent(SGD)with an initial learning rate of 0.01,a weight decay parameter of 0.0001,a batch size of 16,and a total of 300 epochs. Model performance improvements are evaluated based on five aspects: accuracy,precision,recall,F1-score,and the confusion matrix. We validated the model using a dataset of 3,028 core images from 16 wells of the Ordovician in the Tarim Basin,which contain various levels of bioturbation. The results show that: (1)The model can accurately classify bioturbation intensities ranging from level 0 to 5 in digital core images,achieving an accuracy of up to 91%. This significantly outperforms traditional manual methods as well as the original ResNet-50 model. (2)The model not only improves the accuracy of bioturbation grade recognition but also effectively reduces dependence on expert knowledge,as well as the labor intensity and subjectivity associated with manual bioturbation assessments. It demonstrates significant advantages in the automation,intelligence,and quantification of bioturbation feature analysis. This research offers an efficient and reliable quantitative analysis tool for the automated processing of bioturbation degree assessment and identification,which is of great significance to the sedimentology and paleontology studies in the field of oil and gas exploration.

Key words: bioturbation, deep learning, image classification, carbonate reservoir, Ordovician, Tahe oilfield

中图分类号: