[1] |
艾合买提江·阿不都热和曼, 钟建华, 李阳, 陈鑫. 2010. 塔河油田奥陶系缝合线特征及石油地质意义. 中国石油大学学报(自然科学版), 34(1): 7-11,17.
|
|
[Ahmatjan A, Zhong J H, Li Y, Chen X. 2010. Stylolite characteristics and petroleum geology significance of Ordovician carbonate rocks in Tahe Oilfield. Journal of China University of Petroleum(Edition of Natural Science), 34(1): 7-11,17 ]
|
[2] |
金强, 张三, 孙建芳, 魏荷花, 程付启, 张旭栋. 2020. 塔河油田奥陶系碳酸盐岩岩溶相形成和演化. 石油学报, 41(5): 513-525.
doi: 10.7623/syxb202005001
|
|
[Jin Q, Zhang S, Sun J F, Wei H H, Cheng F Q, Zhang X D. 2020. Formation and evolution of karst facies of Ordovician carbonate in Tahe Oilfield. Acta Petrolei Sinica, 41(5): 513-525 ]
doi: 10.7623/syxb202005001
|
[3] |
刘大锰, 王子豪, 陈佳明, 邱峰, 朱凯, 高羚杰, 周柯宇, 许少博, 孙逢瑞. 2024. 基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类: 以鄂尔多斯盆地石炭系本溪组8#煤层为例. 石油与天然气地质, 45(6): 1524-1536.
|
|
[Liu D M, Wang Z H, Chen J M, Qiu F, Zhu K, Gao L J, Zhou K Y, Xu S B, Sun F R. 2024. Classification of macerals and microfractures in deep coal seams based on ResNet: a case study of the No. 8 coal seam of the Carboniferous Benxi Formation in the Ordos Basin. Oil & Gas Geology, 45(6): 1524-1536 ]
|
[4] |
刘大卫, 李映涛, 韩俊, 张继标, 汝智星, 杨孝群, 王石, 黄诚, 肖重阳. 2025. 塔里木盆地顺北地区奥陶系鹰山组超深层白云岩类型及成储潜力评价. 古地理学报, 27(1): 126-140.
doi: 10.7605/gdlxb.2025.00.015
|
|
[Liu D W, Li Y T, Han J, Zhang J B, Ru Z X, Yang X Q, Wang S, Huang C, Xiao C Y. 2025. Ultra-deep dolomite types and their reservoirs potential of the Ordovician Yingshan Formation in Shunbei area,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 27(1): 126-140 ]
|
[5] |
刘合, 任义丽, 李欣, 朱如凯, 胡延旭, 刘茜, 苏乾潇, 吴健平, 李彬. 2024. 岩心智能识别技术内涵与展望. 石油学报, 45(8): 1296-1308.
doi: 10.7623/syxb202408011
|
|
[Liu H, Ren Y L, Li X, Zhu R K, Hu Y X, Liu X, Su Q X, Wu J P, Li B. 2024. Connotation and prospect of intelligent recognition technology for cores. Acta Petrolei Sinica, 45(8): 1296-1308 ]
doi: 10.7623/syxb202408011
|
[6] |
刘艳如, 吴晓红, 何小海, 罗彬彬, 滕奇志. 2025. 基于改进ResNet50的岩心图像分类研究. 智能计算机与应用, 15(2): 10-16.
|
|
[Liu Y R, Wu X H, He X H, Luo B B, Teng Q Z. 2025. Research on core image classification based on improved ResNet50. Intelligent Com-puter and Applications, 15(2): 10-16 ]
|
[7] |
鲁新便, 胡文革, 汪彦, 李新华, 李涛, 吕艳萍, 何新明, 杨德彬. 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347-355.
|
|
[Lu X B, Hu W G, Wang Y, Li X H, Li T, Lü Y P, He X M, Yang D B. 2015. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin. Oil & Gas Geology, 36(3): 347-355 ]
|
[8] |
牛永斌, 崔胜利, 胡亚洲, 钟建华, 王培俊. 2017. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征. 古地理学报, 19(2): 353-363.
doi: 10.7605/gdlxb.2017.02.027
|
|
[Niu Y B, Cui S L, Hu Y Z, Zhong J H, Wang P J. 2017. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe Oilfield of Tarim Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 353-363 ]
|
[9] |
牛永斌, 崔胜利, 胡亚洲, 钟建华, 潘结南. 2018. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义. 古地理学报, 20(4): 691-702.
doi: 10.7605/gdlxb.2018.04.050
|
|
[Niu Y B, Cui S L, Hu Y Z, Zhong J H, Pan J N. 2018. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield. Journal of Palaeogeography(Chinese Edition), 20(4): 691-702 ]
|
[10] |
牛永斌, 徐资璐, 刘圣鑫, 钟建华, 赵佳如, 王培俊. 2020. 塔河油田奥陶系生物扰动碳酸盐岩储集层微观孔隙结构的数字化表征与连通性分析. 古地理学报, 22(4): 785-798.
doi: 10.7605/gdlxb.2020.04.053
|
|
[Niu Y B, Xu Z L, Liu S X, Zhong J H, Zhao J R, Wang P J. 2020. Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe Oilfield. Journal of Palaeogeography(Chinese Edition), 22(4): 785-798 ]
|
[11] |
牛永斌, 赵佳如, 钟建华, 王敏, 徐资璐, 程梦园. 2021. 基于神经网络模型的生物扰动碳酸盐岩储集层识别与孔隙度预测: 以塔里木盆地塔河油田奥陶系生物扰动碳酸盐岩储集层为例. 地质论评, 67(6): 1898-1909.
|
|
[Niu Y B, Zhao J R, Zhong J H, Wang M, Xu Z L, Cheng M Y. 2021. Identification of the bioturbated carbonate reservoir and their porosity prediction based on conventional well logging data using artificial neural networks: take the Ordovician bioturbated carbonate reservoir in Tahe oilfield,Tarim Basin,as an example. Geological Review, 67(6): 1898-1909 ]
|
[12] |
牛永斌, 荆楚涵, 邵威猛, 程怡高, 李志远. 2023. 生物扰动油气水储层的研究现状及展望. 沉积学报, 41(6): 1934-1953.
|
|
[Niu Y B, Jing C H, Shao W M, Cheng Y G, Li Z Y. 2023. A review and perspective of bioturbated hydrocarbon and water reservoirs. Acta Sedimentologica Sinica, 41(6): 1934-1953 ]
|
[13] |
张抗. 1999. 塔河油田的发现及其地质意义. 石油与天然气地质, 20(2): 24-28.
|
|
[Zhang K. 1999. The discovery of Tahe oilfield and its geological significance. Oil & Gas Geology, 20(2): 24-28 ]
|
[14] |
赵佳如, 牛永斌, 王敏, 徐资璐, 崔胜利, 王培俊. 2021. 塔河油田奥陶系生物扰动型碳酸盐岩储集层特征及其孔隙度计算样本检验模型. 沉积学报, 39(2): 482-492.
|
|
[Zhao J R, Niu Y B, Wang M, Xu Z L, Cui S L, Wang P J. 2021. Reservoir characteristics and porosity calculation sample inspection model of Ordovician bioturbated carbonate reservoirs in Tahe oilfield. Acta Sedimentologica Sinica, 39(2): 482-492 ]
|
[15] |
周程阳, 刘伟, 吴天润, 李骜, 韩霄松. 2024. 基于混合专家模型的岩石薄片图像分类. 吉林大学学报(理学版), 62(4): 905-914.
|
|
[Zhou C Y, Liu W, Wu T R, Li A, Han X S. 2024. Classification of rock thin section images based on mixture of expert models. Journal of Jilin University(Science Edition), 62(4): 905-914 ]
|
[16] |
周永章, 左仁广, 刘刚, 袁峰, 毛先成, 郭艳军, 肖凡, 廖杰, 刘艳鹏. 2021. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学. 矿物岩石地球化学通报, 40(3): 556-573.
|
|
[Zhou Y Z, Zuo R G, Liu G, Yuan F, Mao X C, Guo Y J, Xiao F, Liao J, Liu Y P. 2021. The great-leap-forward development of mathematical geoscience during 2010-2019: big data and artificial intelligence algorithm are changing mathematical geoscience. Bulletin of Mineralogy,Petrology and Geochemistry, 40(3): 556-573 ]
|
[17] |
Ayranci K, Yildirim I E, Waheed U B, MacEachern J A. 2021. Deep learning applications in geosciences: insights into ichnological analysis. Applied Sciences, 11(16): 7736.
|
[18] |
Dey J, Sen S. 2017. Impact of bioturbation on reservoir quality and production: a review. Journal of the Geological Society of India, 89(4): 460-470.
|
[19] |
Dorador J, Rodríguez-Tovar F J, Expedition I. 2014. Quantitative estimation of bioturbation based on digital image analysis. Marine Geology,349: 55-60.
|
[20] |
Eltom H A, Syahputra M R N, El-Husseiny A, La Croix A D. . 2023. Spatial complexity of burrow attributes and their impact on porosity and permeability distributions in bioturbated reservoirs. Sedimentary Geology,450: 106395.
|
[21] |
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). June 27-30,2016,Las Vegas,NV,USA. IEEE: 770-778.
|
[22] |
Hou Q B, Zhou D Q, Feng J S. 2021. Coordinate attention for efficient mobile network design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 20-25,2021. Nashville,TN,USA. IEEE: 13713-13722.
|
[23] |
Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23,2018. Salt Lake City,UT,USA. IEEE: 7132-7141.
|
[24] |
Huang G, Liu Z, Van Der Maaten L, Weinberger K Q. 2017. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 4700-4708.
|
[25] |
Hülse D, Vervoort P, van de Velde S J, Kanzaki Y, Boudreau B, Arndt S, Bottjer D J, Hoogakker B, Kuderer M, Middelburg J J, Volkenborn N, Kirtland Turner S, Ridgwell A. 2022. Assessing the impact of bioturbation on sedimentary isotopic records through numerical models. Earth-Science Reviews,234: 104213.
|
[26] |
Kikuchi K, Naruse H. 2024. Abundance of trace fossil phycosiphon incertum in core sections measured using a convolutional neural network. Sedimentary Geology,461: 106570.
|
[27] |
Knaust D. 2012. Methodology and Techniques. Developments in Sedimentology. Elsevier: 245-271.
|
[28] |
Knaust D. 2017. Atlas of Trace Fossils in Well Core: Appearance, Taxonomy and Interpretation. Springer: 1-209.
|
[29] |
Miguez-Salas O, Dorador J, Rodríguez-Tovar F J. 2019. Introducing Fiji and ICY image processing techniques in ichnological research as a tool for sedimentary basin analysis. Marine Geology,413: 1-9.
|
[30] |
Miller M F, Smail S E. 1997. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios, 12(4): 391-396.
|
[31] |
Niu Y B, Cheng M Y, Zhang L J, Zhong J H, Liu S X, Wei D, Xu Z L, Wang P J. 2022. Bioturbation enhanced petrophysical properties in the Ordovician carbonate reservoir of the Tahe Oilfield,Tarim Basin,NW China. Journal of Palaeogeography, 11(1): 31-51.
|
[32] |
Ouyang D L, He S, Zhang G Z, Luo M Z, Guo H Y, Zhan J, Huang Z J. 2023. Efficient multi-scale attention module with cross-spatial learning. ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing: 1-5.
|
[33] |
Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. Arxiv Preprint: 1409.1556(publishied as a coference paper at ICLR 2015).
|
[34] |
Sterling S N. 2011. Cores and core logging for geoscientists. Environmental and Engineering Geoscience,17: 307-308.
|
[35] |
Tan M, Le Q. 2019. Efficientnet: rethinking model scaling for convolutional neural networks. International conference on machine learning. PMLR: 6105-6114.
|
[36] |
Taylor A M, Goldring R. 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1): 141-148.
|
[37] |
Taylor A, Goldring R, Gowland S. 2003. Analysis and application of ichnofabrics. Earth-Science Reviews, 60(3-4): 227-259.
|
[38] |
Timmer E R, Gingras M K, Zonneveld J P. 2016. Pychno: a core-image quantitative ichnology logging software. Palaios, 31(11): 525-532.
|
[39] |
Timmer E, Knudson C, Gingras M. 2021. Applying deep learning for identifying bioturbation from core photographs. AAPG Bulletin, 105(4): 631-638.
doi: 10.1306/08192019051
|
[40] |
Wang Q L, Wu B G, Zhu P F, Li P H, Zuo W M, Hu Q H. 2020. Eca-Net: efficient channel attention for deep convolutional neural networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 13-19,2020. Seattle,WA,USA. IEEE: 11534-11542.
|
[41] |
Woo S, Park J, Lee J Y, Kweon I S. 2018. Cbam: convolutional block attention module. Proceedings of the European Conference on Computer vision(ECCV): 3-19.
|
[42] |
Reineck H E. 1963. Sedimentgefüge im Bereich der südlichen Nordsee. Abhandlungen der se Ckenbergischen Naturforschenden Gesellschaft,505: 1-138.
|