[1] |
白薷, 王世玉, 张璐, 张亮, 杜炜, 耿代, 姚振杰. 2024. 基于MAE神经网络的测井曲线地层自动识别方法. 天然气勘探与开发, 47(4): 63-71.
doi: 10.12055/gaskk.issn.1673-3177.2024.04.007
|
|
[Bai R, Wang S Y, Zhang L, Zhang L, Du W, Geng D, Yao Z J. 2024. An automatic identifying method for strata via logging curves based on MAE neural network. Natural Gas Exploration and Development, 47(4): 63-71 ]
doi: 10.12055/gaskk.issn.1673-3177.2024.04.007
|
[2] |
蔡剑华, 肖永良, 黎小琴. 2019. 基于频率域经验模式分解阈值滤波的核磁共振测井信号去噪. 地球物理学进展, 34(2): 509-516.
|
|
[Cai J H, Xiao Y L, Li X Q. 2019. Nuclear magnetic resonance logging signal de-noising based on empirical mode decomposition threshold filtering in frequency domain. Progress in Geophysics, 34(2): 509-516 ]
|
[3] |
陈良雨, 胡浪, 辛锦涛, 李永贵, 陈挚, 付建伟. 2025. 基于机器学习的混积岩有机碳测井预测方法. 测井技术, 49(2): 288-297.
|
|
[Chen L Y, Hu L, Xin J T, Li Y G, Chen Z, Fu J W. 2025. Logging prediction method for organic carbon in mixed sedimentary rocks based on machine learning. Well Logging Technology, 49(2): 288-297 ]
|
[4] |
陈掌星, 张永安, 李健, 惠钢, 孙有壮, 李奕政, 陈云天, 张东晓. 2025. 测井曲线重构的人工智能大模型. 石油勘探与开发, 52(3): 1-13.
|
|
[Chen Z X, Zhang Y A, Li J, Hui G, Sun Y Z, Li Y Z, Chen Y T, Zhang D X. 2025. Artificial intelligence large model for logging curve reconstruction. Petroleum Exploration and Development, 52(3): 1-13 ]
|
[5] |
郭朝斌, 杨小波, 陈红岳, 韩福民, 朱志国, 刘军. 2006. 约束稀疏脉冲反演在储层预测中的应用. 石油物探, 45(4): 397-400.
|
|
[Guo C B, Yang X B, Chen H Y, Han F M, Zhu Z G, Liu J. 2006. Constrained sparse pulse inversion research in north of Haitongji depression. Geophysical Prospecting for Petroleum, 45(4): 397-400 ]
|
[6] |
贾爱林, 郭智, 郭建林, 闫海军. 2021. 中国储层地质模型30年. 石油学报, 42(11): 1506-1515.
doi: 10.7623/syxb202111010
|
|
[Jia A L, Guo Z, Guo J L, Yan H J. 2021. Research achievements on reservoir geological modeling of China in the past three decades. Acta Petrolei Sinica, 42(11): 1506-1515 ]
doi: 10.7623/syxb202111010
|
[7] |
贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136.
|
|
[Jia C Z, Zheng M, Zhang Y F. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 39(2): 129-136 ]
|
[8] |
赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022. 测井地质学研究中的典型误区与科学思维. 天然气工业, 42(7): 31-44.
|
|
[Lai J, Pang X J, Zhao X, Zhao Y D, Wang G W, Huang Y Y, Li H B, Li Y H. 2022. Typical misunderstandings and scientific ideas in well logging geology research. Natural Gas Industry, 42(7): 31-44 ]
|
[9] |
李洪辉, 岳大力, 李伟, 郭长春, 李响, 吕梅. 2023. 基于分频智能反演的曲流河点坝与废弃河道识别. 石油地球物理勘探, 58(2): 358-368.
|
|
[Li H H, Yue D L, Li W, Guo C C, Li X, Lü M. 2023. Identification of point bar and abandoned channel of meandering river by spectral decomposition inversion based on machine learning. Oil Geophysical Prospecting, 58(2): 358-368 ]
|
[10] |
李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 2021. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 42(4): 508-522.
doi: 10.7623/syxb202104008
|
|
[Li N, Xu B S, Wu H L, Feng Z, Li Y S, Wang K W, Liu P. 2021. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 42(4): 508-522 ]
doi: 10.7623/syxb202104008
|
[11] |
李婷婷, 王钊, 马世忠, 王昭, 袁子龙. 2015. 地震属性融合方法综述. 地球物理学进展, 30(1): 378-385.
|
|
[Li T T, Wang Z, Ma S Z, Wang Z, Yuan Z L. 2015. Summary of seismic attributes fusion method. Progress in Geophysics, 30(1): 378-385 ]
|
[12] |
李伟. 2021. 基准面旋回控制的河流相储层构型样式及形成机理. 中国石油大学(北京)博士学位论文.
|
|
[Li W. 2021. Architecture models and formation mechanism of fluvial reservoirs in responsible for the base-level cycle. Doctoral dissertation of China University of Petroleum(Beijing) ]
|
[13] |
李子航. 2023. 基于深度学习地震叠前反演方法与应用研究. 中国石油大学(北京)博士学位论文.
|
|
[Li Z H. 2023. Research on deep learning: based pre-stack seismic inversion methods and applications. Doctoral dissertation of China University of Petroleum(Beijing) ]
|
[14] |
刘磊, 李伟, 杜玉山, 岳大力, 张雪婷, 侯加根. 2024. 基于Stacking集成学习的分频地震属性融合储层预测方法. 石油地球物理勘探, 59(1): 12-22.
|
|
[Liu L, Li W, Du Y S, Yue D L, Zhang X T, Hou J G. 2024. Reservoir prediction method of fusing frequency-decomposed seismic attributes using Stacking ensemble learning. Oil Geophysical Prospecting, 59(1): 12-22 ]
|
[15] |
刘彦锋, 张文彪, 段太忠, 廉培庆, 李蒙, 赵华伟. 2021. 深度学习油气藏地质建模研究进展. 地质科技通报, 40(4): 235-241.
|
|
[Liu Y F, Zhang W B, Duan T Z, Lian P Q, Li M, Zhao H W. 2021. Progress of deep learning in oil and gas reservoir geological modeling. Bulletin of Geological Science and Technology, 40(4): 235-241 ]
|
[16] |
罗刚, 肖立志, 史燕青, 邵蓉波. 2022. 基于机器学习的致密储层流体识别方法研究. 石油科学通报, 7(1): 24-33.
|
|
[Luo G, Xiao L Z, Shi Y Q, Shao R B. 2022. Machine learning for reservoir fluid identification with logs. Petroleum Science Bulletin, 7(1): 24-33 ]
|
[17] |
闵超, 代博仁, 张馨慧, 杜建平. 2020. 机器学习在油气行业中的应用进展综述. 西南石油大学学报(自然科学版), 42(6): 1-15.
doi: 10.11885/j.issn.1674-5086.2020.06.05.03
|
|
[Min C, Dai B R, Zhang X H, Du J P. 2020. A review of the application progress of machine learning in oil and gas industry. Journal of Southwest Petroleum University(Science & Technology Edition), 42(6): 1-15 ]
|
[18] |
裘怿楠, 陈子琪. 1996. 油藏描述. 北京: 石油工业出版社.
|
|
[Qiu Y N, Chen Z Q. 1996. Reservoir Description. Beijing: Petroleum Industry Press ]
|
[19] |
任昱霏, 闫建平, 王敏, 宋东江, 耿斌. 2025. 复杂碎屑岩粒度测井反演方法及在岩性精细识别中的应用. 古地理学报, 27(1): 240-255.
doi: 10.7605/gdlxb.2024.06.069
|
|
[Ren Y F, Yan J P, Wang M, Song D J, Geng B. 2025. Particle size logging inversion method of deep complex clastic rock and its application in fine lithology identification. Journal of Palaeogeography(Chinese Edition), 27(1): 240-255 ]
|
[20] |
邵蓉波, 肖立志, 廖广志, 史燕青, 周军, 李国军, 侯学理. 2022. 基于多任务学习的测井储层参数预测方法. 地球物理学报, 65(5): 1883-1895.
|
|
[Shao R B, Xiao L Z, Liao G Z, Shi Y Q, Zhou J, Li G J, Hou X L. 2022. Multitask learning based reservoir parameters prediction with geophysical logs. Chinese Journal of Geophysics, 65(5): 1883-1895 ]
|
[21] |
史鹏达, 刘孙俊, 王琪凯, 吴秋伶. 2025. 基于改进Stacking方法的成像测井裂缝识别. 计算机测量与控制, 33(4): 217-224,231.
|
|
[Shi P D, Liu S J, Wang Q K, Wu Q L. 2025. Imaging logging fracture identification based on improved stacking algorithm. Computer Measurement & Control, 33(4): 217-224,231 ]
|
[22] |
宋随宏, 史燕青, 侯加根. 2022. 基于生成对抗网络的储层地质建模方法研究进展. 石油科学通报, 7(1): 34-49.
|
|
[Song S H, Shi Y Q, Hou J G. 2022. Review of a Generative Adversarial Networks(GANs)-based geomodelling method. Petroleum Science Bulletin, 7(1): 34-49 ]
|
[23] |
宋梓豪, 巩红雨, 冉爱华, 杨鹏辉, 刘迪仁. 2024. 基于ADASYN-GS-XGBOOST混合模型的火山岩测井岩性识别. 海相油气地质, 29(2): 188-196.
|
|
[Song Z H, Gong H Y, Ran A H, Yang P H, Liu D R. 2024. Lithology logging identification of volcanic rock based on ADASYN-GS-XGBOOST hybrid model. Marine Origin Petroleum Geology, 29(2): 188-196 ]
|
[24] |
王俊, 曹俊兴, 周欣. 2022. 基于深度双向循环神经网络的储层孔隙度预测. 地球物理学进展, 37(1): 267-274.
|
|
[Wang J, Cao J X, Zhou X. 2022. Reservoir porosity prediction based on deep bidirectional recurrent neural networks. Progress in Geophysics, 37(1): 267-274 ]
|
[25] |
王立鑫, 尹艳树, 王晖, 张昌民, 冯文杰, 刘振坤, 王盘根, 程丽芳, 刘炯. 2021. 基于自适应空间抽样由二维剖面重构三维地质模型的方法: 以加拿大某区块McMurray组储集层为例. 石油勘探与开发, 48(2): 347-359.
doi: 10.11698/PED.2021.02.11
|
|
[Wang L X, Yin Y S, Wang H, Zhang C M, Feng W J, Liu Z K, Wang P G, Cheng L F, Liu J. 2021. A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling: a case study of Cretaceous McMurray reservoirs in a block of Canada. Petroleum Exploration and Development, 48(2): 347-359 ]
|
[26] |
王武荣, 岳大力, 李伟, 吴胜和, 芦凤明, 续一简. 2024. 分频智能反演协同三维岩相建模的单层砂体预测. 地质科学, 59(6): 1694-1707.
|
|
[Wang W R, Yue D L, Li W, Wu S H, Lu F M, Xu Y J. 2024. Prediction of single-layer sand body by spectral-decomposition intelligent inversion collaborating 3D lithofacies modeling. Chinese Journal of Geology, 59(6): 1694-1707 ]
|
[27] |
王香文, 刘红, 滕彬彬, 王连雨. 2012. 地质统计学反演技术在薄储层预测中的应用. 石油与天然气地质, 33(5): 730-735.
|
|
[Wang X W, Liu H, Teng B B, Wang L Y. 2012. Application of geostatistical inversion to thin reservoir prediction. Oil & Gas Geology, 33(5): 730-735 ]
|
[28] |
王欣, 蒋涛, 周幂, 高国海, 蒋薇, 梅青燕, 赵翔. 2024. 邻域信息增强的MLSTM在储层参数预测中的应用研究: 以非均质性碳酸盐岩为例. 地球物理学进展, 39(2): 620-633.
|
|
[Wang X, Jiang T, Zhou M, Gao G H, Jiang W, Mei Q Y, Zhao X. 2024. Application of neighborhood information-enhanced MLSTM in reservoir parameter prediction: a case study of heterogeneous carbonate reservoirs. Progress in Geophysics, 39(2): 620-633 ]
|
[29] |
王彦仓, 秦凤启, 杜维良, 王孟华, 王亚, 郝军, 杜宪英, 张玲彦. 2013. 地震属性优选、融合探讨. 中国石油勘探, 18(6): 69-73.
|
|
[Wang Y C, Qin F Q, Du W L, Wang M H, Wang Y, Hao J, Du X Y, Zhang L Y. 2013. Discussions on optimization and fusion of seismic attributes. China Petroleum Exploration, 18(6): 69-73 ]
|
[30] |
吴胜和. 2010. 储层表征与建模. 北京: 石油工业出版社.
|
|
[Wu S H. 2010. Reservoir Characterization and Modeling. Beijing: Petroleum Industry Press ]
|
[31] |
邬德刚, 吴胜和, 刘磊, 孙以德. 2024a. 基于模式约束的油层单元智能自动对比方法: 以渤海湾盆地史南油田史深100区块加积式地层对比为例. 石油勘探与开发, 51(1): 161-172.
|
|
[Wu D G, Wu S H, Liu L, Sun Y D. 2024a. An intelligent automatic correlation method of oil-bearing strata based on pattern constraints: an example of accretionary stratigraphy of Shishen 100 block in Shinan Oilfield of Bohai Bay Basin,East China. Petroleum Exploration and Development, 51(1): 161-172 ]
|
[32] |
邬德刚, 吴胜和, 刘常妮, 岳大力, 范峥. 2024b. 基于平面相约束的三维砂体构型建模方法. 中国石油大学学报(自然科学版),1-13. https://link.cnki.net/urlid/37.1441.TE.20240617.1429.002.
URL
|
|
[Wu D G, Wu S H, Liu C N, Yue D L, Fan Z. 2024b. An intelligent 3D reservoir modeling method with constraint from planar distribution of sedimentary facies. Journal of China University of Petroleum(Edition of Natural Science),1-13. https://link.cnki.net/urlid/37.1441.TE.20240617.1429.002. ]
URL
|
[33] |
邬德刚, 吴胜和, 张玉飞, 余季陶. 2025. 小样本条件下的储层物性参数智能解释方法研究. 石油科学通报, 10(2): 378-391.
|
|
[Wu D G, Wu S H, Zhang Y F, Yu J T. 2025. Research on intelligent interpretation methods for reservoir physical parameters under few-shot conditions. Petroleum Science Bulletin, 10(2): 378-391 ]
|
[34] |
徐彬森, 肖立志. 2024. 基于串行及并行多任务学习网络的储层参数评价研究. 地球物理学报, 67(4): 1613-1626.
|
|
[Xu B S, Xiao L Z. 2024. Comparison of well logging formation evaluation using serial and parallel multi-task learning networks. Chinese Journal of Geophysics, 67(4): 1613-1626 ]
|
[35] |
徐伟, 林振洲, 潘和平, 秦臻, 邓呈祥, 覃瑞东, 纪扬. 2017. 木里水合物测井曲线分层方法. 物探与化探, 41(6): 1081-1087.
|
|
[Xu W, Lin Z Z, Pan H P, Qin Z, Deng C X, Qin R D, Ji Y. 2017. Hydrate logging curve stratification method in Muli area. Geophysical and Geochemical Exploration, 41(6): 1081-1087 ]
|
[36] |
徐朝晖, 刘钰铭, 周新茂, 何辉, 张波, 吴昊, 高建. 2019. 基于卷积神经网络算法的自动地层对比实验. 石油科学通报, 4(1): 1-10.
|
|
[Xu Z H, Liu Y M, Zhou X M, He H, Zhang B, Wu H, Gao J. 2019. An experiment in automatic stratigraphic correlation using convolutional neural networks. Petroleum Science Bulletin, 4(1): 1-10 ]
|
[37] |
谢子实. 2025. 基于三维地震资料的智能化断层识别与层位追踪方法研究: 以多斯盆地庆城北区延长组为例. 中国石油大学(北京)硕士学位论文.
|
|
[Xie Z S. 2025. Study on intelligent fault identification and horizon tracking methods based on 3D seismic data: the extension formation of Qingcheng North District,Ordos Basin as an example. Masteral dissertation of China University of Petroleum(Beijing) ]
|
[38] |
杨柳青, 陈伟, 查蓓. 2019. 利用卷积神经网络对储层孔隙度的预测研究与应用. 地球物理学进展, 34(4): 1548-1555.
|
|
[Yang L Q, Chen W, Zha B. 2019. Prediction and application of reservoir porosity by convolutional neural network. Progress in Geophysics, 34(4): 1548-1555 ]
|
[39] |
印兴耀, 周静毅. 2005. 地震属性优化方法综述. 石油地球物理勘探, 40(4): 482-489.
|
|
[Yin X Y, Zhou J Y. 2005. Summary of optimum methods of seismic attributes. Oil Geophysical Prospecting, 40(4): 482-489 ]
|
[40] |
岳大力, 胡光义, 李伟, 范廷恩, 胡嘉靖, 乔慧丽. 2018a. 井震结合的曲流河储层构型表征方法及其应用: 以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109.
|
|
[Yue D L, Hu G Y, Li W, Fan T E, Hu J J, Qiao H L. 2018a. Meandering fluvial reservoir architecture characterization method and application by combining well logging and seismic data: a case study of QHD32- 6 oilfield. China Offshore Oil and Gas, 30(1): 99-109 ]
|
[41] |
岳大力, 李伟, 王军, 王武荣, 李健. 2018b. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例. 古地理学报, 20(6): 941-950.
|
|
[Yue D L, Li W, Wang J, Wang W R, Li J. 2018b. Prediction of meandering belt and point-bar recognition based on spectral-decomposed and fused seismic attributes: a case study of the Guantao Formation,Chengdao Oilfield,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 20(6): 941-950 ]
|
[42] |
岳大力, 李伟, 杜玉山, 胡光义, 王文枫, 王武荣, 王政, 鲜本忠. 2022. 河流相储层地震属性优选与融合方法综述. 地球科学, 47(11): 3929-3943.
|
|
[Yue D L, Li W, Du Y S, Hu G Y, Wang W F, Wang W R, Wang Z, Xian B Z. 2022. Review on optimization and fusion of seismic attributes for fluvial reservoir characterization. Earth Science, 47(11): 3929-3943 ]
|
[43] |
张东晓, 陈云天, 孟晋. 2018. 基于循环神经网络的测井曲线生成方法. 石油勘探与开发, 45(4): 598-607.
doi: 10.11698/PED.2018.04.06
|
|
[Zhang D X, Chen Y T, Meng J. 2018. Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development, 45(4): 598-607 ]
doi: 10.11698/PED.2018.04.06
|
[44] |
张国印, 王志章, 林承焰, 王伟方, 李令, 李诚. 2020. 基于小波变换和卷积神经网络的地震储层预测方法及应用. 中国石油大学学报(自然科学版), 44(4): 83-93.
|
|
[Zhang G Y, Wang Z Z, Lin C Y, Wang W F, Li L, Li C. 2020. Seismic reservoir prediction method based on wavelet transform and convolutional neural network and its application. Journal of China University of Petroleum, 44(4): 83-93 ]
|
[45] |
张国印, 林承焰, 王志章, 任丽华, 张宪国, 曲康, 张向博. 2024. 知识与数据融合驱动的油气藏智能表征及研究进展. 地球物理学进展, 39(1): 119-140.
|
|
[Zhang G Y, Lin C Y, Wang Z Z, Ren L H, Zhang X G, Qu K, Zhang X B. 2024. Hybrid knowledge-driven and data-driven intelligent reservoir characterization and its research progress. Progress in Geophysics, 39(1): 119-140 ]
|
[46] |
张赫, 单高军, 杜庆龙, 王承祥. 2022. 大庆长垣油田特高含水后期水驱开发技术难题及其对策. 大庆石油地质与开发, 41(4): 60-66.
|
|
[Zhang H, Shan G J, Du Q L, Wang C X. 2022. Technical challenges and solutions of water flooding development in late stage of ultra-high water cut in Placanticline oilfield in Daqing. Petroleum Geology & Oilfield Development in Daqing, 41(4): 60-66 ]
|
[47] |
张宪国, 吴啸啸, 黄德榕, 林承焰. 2021. 极限学习机驱动的地震多属性融合识别曲流带单一点坝. 石油地球物理勘探, 56(6): 1340-1350.
|
|
[Zhang X G, Wu X X, Huang D R, Lin C Y. 2021. Single point bar interpretation in meandering belt with extreme learning machine driven multiple seismic attributes fusion. Oil Geophysical Prospecting, 56(6): 1340-1350 ]
|
[48] |
邹文波. 2020. 人工智能研究现状及其在测井领域的应用. 测井技术, 44(4): 323-328.
|
|
[Zhou W B. 2020. Artificial Intelligence Research Status and Applications in Well Logging. Well Logging Technology, 44(4): 323-328 ]
|
[49] |
朱石磊, 段林娣, 林畅松, 高世臣, 姚振兴. 2012. 基于灰度共生矩阵的地震数据空间结构属性分析技术. 石油地球物理勘探, 47(6): 951-957,972,1024,841.
|
|
[Zhu S L, Duan L D, Lin C S, Gao S C, Yao Z X. 2012. Seismic structural properties analysis based on GLCM in Damintun sag. Oil Geophysical Prospecting, 47(6): 951-957,972,1024,841 ]
|
[50] |
Abdellatif A, Elsheikh A H, Busby D, Berthet P. 2023. Generation of non-stationary stochastic fields using Generative Adversarial Networks. arXiv preprint: 2205. 05469. https://arxiv.org/abs/2205.05469v2.
URL
|
[51] |
Azevedo L, Soares A. 2017. Geostatistical Methods for Reservoir Geophysics: Advances in Oil and Gas Exploration & Production. Springer International Publishing.
|
[52] |
Barnes A E. 1996. Theory of 2D complex seismic trace analysis. Geophysics, 61(1): 264-272.
|
[53] |
Campbell T J, Richards F B, Silva R L, Wach G, Eliuk L. 2015. Interpretation of the Penobscot 3D seismic volume using constrained sparse spike inversion,Sable sub-Basin,offshore Nova Scotia. Marine and Petroleum Geology,68: 73-93.
|
[54] |
Chen H C, Fang J H. 1986. A heuristic search method for optimal zonation of well logs. Mathematical Geology, 18(5): 489-500.
|
[55] |
Chen M, Wu S H, Bedle H, Xie P F, Zhang J J, Wang Y L. 2022. Modeling of subsurface sedimentary facies using Self-Attention Generative Adversarial Networks(SAGANs). Journal of Petroleum Science and Engineering,214: 110470.
|
[56] |
Chen Q, Sidney S. 1997. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16(5): 445-448.
|
[57] |
Chi P, Sun J M, Yan W C, Luo X. 2024. Multiscale fusion of tight sandstone digital rocks using attention-guided generative adversarial network. Marine and Petroleum Geology,160: 106647.
|
[58] |
Chopra S, Marfurt K J. 2005. Seismic attributes: a historical perspective. Geophysics, 70(5): 3SO-28SO.
|
[59] |
Cui Z S, Chen Q Y, Liu G, Xun L. 2024. SA-RelayGANs: a novel framework for the characterization of complex hydrological structures based on GANs and self-attention mechanism. Water Resources Research, 60(1): e2023WR035932.
|
[60] |
Cunha A, Pochet A, Lopes H, Gattass M. 2020. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences,135: 104344.
|
[61] |
Deutsch C V. 2002. Geostastistical Reservoir Modeling. Oxford: Oxford University Press.
|
[62] |
Di Federico G, Durlofsky L J. 2025. Latent diffusion models for parameterization of facies-based geomodels and their use in data assimilation. Computers & Geosciences,194: 105755.
|
[63] |
Di H B, Li C, Smith S, Li Z, Abubakar A. 2021. Imposing interpretational constraints on a seismic interpretation convolutional neural network. Geophysics, 86(3): IM63-IM71.
|
[64] |
Dorrington K P, Link C A. 2004. Genetic-algorithm/neural-network approach to seismic attribute selection for well-log prediction. Geophysics, 69(1): 212-221.
|
[65] |
Du Z S, Guo Z Y, Liu Y X, Chen Y L, Li Y X, Li H J. 2023. Development of an automatic tracking model for seismic stratigraphic correlation based on information entropy theory. Highlights in Science,Engineering and Technology,70: 369-375.
|
[66] |
Ellis D V, Singer J M. 2007. Neutron porosity devices. Well Logging for Earth Scientists. Dordrecht: Springer Netherlands,351-382.
|
[67] |
Fan W Y, Liu G, Chen Q Y, Cui Z S, Wu X C, Zhang Z T. 2024. Stochastic reconstruction of geological reservoir models based on a concurrent multi-stage U-Net generative adversarial network. Computers & Geosciences, 186: 105562.
|
[68] |
Galloway W E. 1989. Genetic stratigraphic sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units. AAPG Bulletin,73: 125-142.
|
[69] |
Gama P H T, Faria J, Sena J, Neves F, Riffel V R, Perez L, Korenchendler A, Sobreira M C A, Machado A M C. 2025. Imputation in well log data: a benchmark for machine learning methods. Computers & Geosciences,196: 105789.
|
[70] |
González E F, Mukerji T, Mavko G. 2008. Seismic inversion combining rock physics and multiple-point geostatistics. Geophysics, 73(1): R11-R21.
|
[71] |
Guo J H, Zhang Z S, Guo G S, Xiao H, Zhao Q, Zhang C M, Lü H Y, Zhu Z M, Wang C. 2024. Optimized random forest method for 3D evaluation of coalbed methane content using geophysical logging data. ACS Omega, 9(33): 35769-35788.
doi: 10.1021/acsomega.4c04305
pmid: 39184457
|
[72] |
Hale D. 2009. Structure-oriented smoothing and semblance. CWP Report,635: 261-270.
|
[73] |
Haritha D, Satyavani N, Ramesh A. 2025. Generation of missing well log data with deep learning: CNN-Bi-LSTM approach. Journal of Applied Geophysics,233: 105628.
|
[74] |
Hu X, Song S H, Hou J G, Yin Y S, Hou M Q, Azevedo L. 2024. Stochastic modeling of thin mud drapes inside point bar reservoirs with ALLUVSIM-GANSim. Water Resources Research, 60(6): e2023WR035989.
|
[75] |
Laloy E, Hérault R, Jacques D, Linde N. 2018. Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resources Research, 54(1): 381-406.
|
[76] |
Li N, Liu P, Wu H L, Li Y S, Zhang W H, Wang K W, Feng Z, Wang H. 2024. Development and prospect of acoustic reflection imaging logging processing and interpretation method. Petroleum Exploration and Development,51: 839-851.
|
[77] |
Li W, Yue D L, Wu S H, Wang W F, Li J, Wang W R, Tian T H. 2019a. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion. Marine and Petroleum Geology,105: 168-184.
|
[78] |
Li W, Yue D L, Wang W F, Wang W R, Wu S H, Li J, Chen D P. 2019b. Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs. Journal of Petroleum Science and Engineering,177: 1087-1102.
|
[79] |
Li W, Yue D L, Wu S H, Shu Q L, Wang W F, Long T, Zhang B H. 2020. Thickness prediction for high-resolution stratigraphic interpretation by fusing seismic attributes of target and neighboring zones with an SVR algorithm. Marine and Petroleum Geology,113: 104153.
|
[80] |
Li W, Yue D L, Colombera L, Du Y S, Zhang S Y, Liu R J, Wang W R. 2021. Quantitative prediction of fluvial sandbodies by combining seismic attributes of neighboring zones. Journal of Petroleum Science and Engineering,196: 107749.
|
[81] |
Li W, Yue D L, Colombera L, Duan D P, Long T, Wu S H, Liu Y M. 2023. A novel method for seismic-attribute optimization driven by forward modeling and machine learning in prediction of fluvial reservoirs. Geoenergy Science and Engineering,227: 211952.
|
[82] |
Liang J T, Wang H L, Blum M J, Ji X Y. 2019. Demarcation and correlation of stratigraphic sequences using wavelet and Hilbert-Huang transforms: a case study from Niger Delta Basin. Journal of Petroleum Science and Engineering,182: 106329.
|
[83] |
Liu G Q. 2021. Challenges and countermeasures of log evaluation in unconventional petroleum exploration and development. Petroleum Exploration and Development,48: 1033-1047.
|
[84] |
Liu G Q, Gong R B, Shi Y J, Wang Z Z, Mi L, Yuan C, Zhong J B. 2022. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation. Petroleum Exploration and Development,49: 572-585.
|
[85] |
Liu L, Yue D L, Li W, Wu D G, Gao J, Zhong Q, Wang W R, Hou J G. 2025. A novel stochastic simulation method for sedimentary facies based on the generative adversarial network with a spatially-adaptive conditioning module and comprehensive attention mechanisms. Geoenergy Science and Engineering,249: 213758.
|
[86] |
Liu N H, Li Z, Liu R C, Zhang H D, Gao J H, Wei T, Si J L, Wu H. 2023a. ASHFormer: axial and sliding window-based attention with high-resolution transformer for automatic stratigraphic correlation. IEEE Transactions on Geoscience and Remote Sensing,61: 5913910.
|
[87] |
Liu R J, Yue D L, Li W, Li Z, Wang W R, Li S X, Shen Y H, Ma S W, Wu G Z, Cao P, Wu S H. 2024. Characterization of tight sandstone and sedimentary facies using well logs and seismic inversion in lacustrine gravity-flow deposits. Journal of Asian Earth Sciences,259: 105897.
|
[88] |
Liu X Y, Chen X H, Cheng J W, Zhou L, Chen L, Li C, Zu S H. 2023b. Simulation of complex geological architectures based on multistage generative adversarial networks integrating with attention mechanism and spectral normalization. IEEE Transactions on Geoscience and Remote Sensing,61: 5913215.
|
[89] |
Lou Y H, Zhang B, Yong P, Fang H J, Zhang Y J, Cao D P. 2021. Semiautomatic fault-surface generation and interpretation using topological metrics. Geophysics, 86(3): O13-O27.
|
[90] |
Lu H, Li Q, Yue D L, Wu S H, Fu Y P, Tang R Z, Zhang Z Y. 2021. Study on optimal selection of porosity logging interpretation methods for Chang 73 segment of the Yanchang Formation in the southwestern Ordos Basin,China. Journal of Petroleum Science and Engineering,198: 108153.
|
[91] |
Maiti S, Tiwari R K. 2005. Automatic detection of lithologic boundaries using the Walsh transform: a case study from the KTB borehole. Computers & Geosciences, 31(8): 949-955.
|
[92] |
Marfurt K J, Kirlin R L, Farmer S L, Bahorich M S. 1998. 3D seismic attributes using a semblance-based coherency algorithm. Geophysics, 63(4): 1150-1165.
|
[93] |
Maurya S P, Singh N P. 2018. Application of LP and ML sparse spike inversion with probabilistic neural network to classify reservoir facies distribution: a case study from the Blackfoot field,Canada. Journal of Applied Geophysics,159: 511-521.
|
[94] |
McArdle N J, Iacopini D, KunleDare M A, Paton G S. 2014. The use of geologic expression workflows for basin scale reconnaissance: a case study from the Exmouth subbasin,North Carnarvon Basin,northwestern Australia. Interpretation, 2(1): SA163-SA177.
|
[95] |
Miall A D. 1988. Reservoir heterogeneities in fluvial sandstones: lessons from outcrop studies. AAPG Bulletin, 72(6): 682-697.
|
[96] |
Nesvold E, Mukerji T. 2021. Simulation of fluvial patterns with GANs trained on a data set of satellite imagery. Water Resources Research,57: e2019WR025787.
|
[97] |
Otchere D A, Ganat T O A, Gholami R, Lawal M. 2021. A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction. Journal of Natural Gas Science and Engineering,91: 103962.
|
[98] |
Pettijohn F J, Potter P E, Siever R. 1973. Sand and Sandstone. New York: Springer-Verlag.
|
[99] |
Roger M S. 2006. Stratigraphic Reservoir Characterization for Petroleum Geologists,Geophysicists and Engineers. Amsterdam: Elsevier.
|
[100] |
Selley R C, Sonnenberg S A. 2015. Chapter 3:methods of exploration. In: Selley R C,Sonnenberg S A(eds). Elements of Petroleum Geology(Third Edition). Boston: Academic Press,41-152.
|
[101] |
Shi Y, Liao J Q, Gan L, Tang R J. 2024. Lithofacies prediction from well log data based on deep learning: a case study from southern sichuan. Applied Sciences, 14(18): 8195.
|
[102] |
Song S H, Mukerji T, Hou J G. 2021a. GANSim: conditional facies simulation using an improved progressive Growing of Generative Adversarial Networks(GANs). Computational Geosciences,53: 1413-1444.
|
[103] |
Song S H, Mukerji T, Hou J G. 2021b. Geological facies modeling based on progressive growing of Generative Adversarial Networks(GANs). Computational Geosciences,25: 1251-1273.
|
[104] |
Song S H, Mukerji T, Hou J G. 2022a. Bridging the gap between geophysics and geology with Generative Adversarial Networks. IEEE Transactions on Geoscience and Remote Sensing,60: 5902411.
|
[105] |
Song S H, Mukerji T, Hou J G, Zhang D X, Lü X R. 2022b. GANSim-3D for conditional geomodeling: theory and field application. Water Resources Research, 58(7): e2021WR031865.
|
[106] |
Song S H, Zhang D X, Mukerji T, Wang N Z. 2023. GANSim-surrogate: an integrated framework for stochastic conditional geomodelling. Journal of Hydrology,620: 129493.
|
[107] |
Strebelle S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology,34: 1-21.
|
[108] |
Strebelle S. 2021. Multiple-point statistics simulation models: pretty pictures or decision-making tools? Mathematical Geosciences,53: 267-278.
|
[109] |
Tian Y J, Gao J H, Wang D X. 2021 Synchrosqueezing optimal basic wavelet transform and its application on sedimentary cycle division. IEEE Transactions on Geoscience and Remote Sensing,60: 5908413.
|
[110] |
Tognoli F M W, Spaniol A F, de Mello M E, de Souza L V. 2024. A machine-learning based approach to predict facies associations and improve local and regional stratigraphic correlations. Marine and Petroleum Geology,160: 106636.
|
[111] |
Veeken P C H, Priezzhev I I, Shmaryan L E, Shteyn Y I, Barkov A Y, Ampilov Y P. 2009. Nonlinear multitrace genetic inversion applied on seismic data across the Shtokman Field,Offshore northern Russia. Geophysics, 74(6): WCD49-WCD59.
|
[112] |
Wang W R, Qu L B, Yue D L, Li W, Liu J L, Jin W J, Fu J L, Zhang J R, Chen D X, Wang Q C, Li S. 2025. Integrated artificial intelligence approach for well-log fluid identification in dual-medium tight sandstone gas reservoirs. Frontiers in Earth Science,13: 1591110.
|
[113] |
Wang Z H, Chen T S, Hu X, Wang L X, Yin Y S. 2022. A multi-point geostatistical seismic inversion method based on local probability updating of lithofacies. Energies, 15(1): 299.
|
[114] |
Wang Z H, Cai Y D, Liu D M, Lu J, Qiu F, Hu J H, Li Z T, Gamage R P. 2024. A review of machine learning applications to geophysical logging inversion of unconventional gas reservoir parameters. Earth-Science Reviews,258: 104969.
|
[115] |
Weber K J. 1986. How heterogeneity affects oil recovery. In: Lake L W,Carrol H B(eds). Reservoir Characterization. London: Academic Press.
|
[116] |
Wu X M, Hale D. 2013. Extracting horizons and sequence boundaries from 3D seismic images. SEG Technical Program Expanded Abstracts: 1440-1445.
|
[117] |
Wu X M, Liang L M, Shi Y Z, Fomel S. 2019. FaultSeg3D: using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics,84(3): IM35-IM45.
|
[118] |
Wu P Y, Jain V, Kulkarni M S, Abubakar A. 2018. Machine learning-based method for automated well-log processing and interpretation. In: SEG Technical Program Expanded Abstracts 2018. Anaheim,California: Society of Exploration Geophysicists,2041-2045.
|
[119] |
Xu Z H, Zhang B, Li F Y, Cao G, Liu Y M. 2018. Well-log decomposition using variational mode decomposition in assisting the sequence stratigraphy analysis of a conglomerate reservoir. Geophysics, 83(4): B221-B228.
|
[120] |
Yue D L, Li W, Wang W R, Hu G Y, Qiao H L, Hu J J, Zhang M L, Wang W F. 2019. Fused spectral-decomposition seismic attributes and forward seismic modelling to predict sand bodies in meandering fluvial reservoirs. Marine and Petroleum Geology,99: 27-44.
|
[121] |
Zeng H L. 2017. Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels. Interpretation, 5(3): T411-T422.
|
[122] |
Zhang G Y, Wang Z Z, Chen Y K. 2018. Deep learning for seismic lithology prediction. Geophysical Journal International,215: 1368-1387.
|
[123] |
Zhang H R, Hu Y T, Li X S, Du K, Zeng T X, Li C P. 2024a. Application of support vector machines and genetic algorithms to fluid identification in offshore granitic subduction hill reservoirs. Geoenergy Science and Engineering,240: 213013.
|
[124] |
Zhang H Y, Wu W S, Song X Y, Chen Z X. 2024b. Improving density logging resolution by VMD-CEEMDAN-ICWT method and its application in thin layer identification. Geoenergy Science and Engineering,239: 212993.
|
[125] |
Zhang T, Yang Z H, Li D Y. 2022. Stochastic simulation of deltas based on a concurrent multi-stage VAE-GAN model. Journal of Hydrology,607: 127493.
|
[126] |
Zhang T F, Tilke P, Dupont E, Zhu L C, Liang L, Bailey W. 2019. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Petroleum Science,16: 541-549.
|
[127] |
Zhen Y, Zhang A, Zhao X M, Ge J W, Zhao Z, Yang C C. 2024. Prediction of deep low permeability sandstone seismic reservoir based on CBAM-CNN. Geoenergy Science and Engineering,242: 213241.
|
[128] |
Zhou T Q, Zhu Q Z, Zhu H Y, Zhao Q, Shi Z S, Zhao S X, Zhang C L, Wang S Y. 2023. DRAG: a novel method for automatic geological boundary recognition in shale strata using multi-well log curves. Processes, 11(10): 2998.
|
[129] |
Zou C L, Zhang J H, Sun Y Z, Pang S C, Zhang Y A. 2024. Enhancing fluid classification using meta-learning and transformer through small-sample drilling data to interpret well logging data. Physics of Fluids, 36(7): 076608.
|