[1] 陈代钊. 2008. 构造-热液白云岩化作用与白云岩储层. 石油与天然气地质, 29(5): 614-622. [Chen D Z.2008. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs. Oil and Gas Geology, 29(5): 614-622] [2] 陈轩,赵文智,张利萍,赵宗举,刘银河,张宝民,杨雨. 2012. 川中地区中二叠统构造热液白云岩的发现及其勘探意义. 石油学报, 33(4): 562-569. [Chen X,Zhao W Z,Zhang L P,Zhao Z J,Liu Y H,Zhang B M,Yang Y.2012. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin. Acta Petrolei Sinica, 33(4): 562-569] [3] 程裕淇,项礼文,朱兆玲,李善姬. 1999. 中国地层典·寒武系. 北京: 地质出版社,6-76. [Cheng Y Q,Xiang L W,Zhu Z L,Li S J.1999. Stratigraphical Lexicon of China: Cambrian. Beijing: Geological Publishing House,6-76] [4] 邓嘉婷,李飞,龚峤林,李红,易楚恒,连承波. 2021. 埃迪卡拉纪—寒武纪之交微生物岩特征对比及古海洋学意义: 以汉南—米仓山地区为例. 古地理学报, 23(5): 919-936. [Deng J T,Li F,Gong Q L,Li H,Yi C H,Lian C B.2021. Characteristics and palaeoceanographic significances of microbialite development in the Ediacaran-Cambrian transition: a case study from Hannan-Micangshan area. Journal of Palaeogeography(Chinese Edition), 23(5): 919-936] [5] 龚峤林,李飞,苏成鹏,曾楷,唐浩,谭秀成. 2018. 细粒浊积岩特征、分布及发育机制: 以川北唐家河剖面寒武系郭家坝组为例. 古地理学报, 20(3): 349-364. [Gong Q L,Li F,Su C P,Zeng K,Tang H,Tan X C.2018. Characteristics,distribution and mechanisms of fine-grained turbidite: a case study from the Cambrian Guojiaba Formation in Tangjiahe Section,northern Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 20(3): 349-364] [6] 郭旭升,胡东风,黄仁春,魏志红,段金宝,魏祥峰,范小军,缪志伟. 2020. 四川盆地深层—超深层天然气勘探进展与展望. 天然气工业, 40(5): 1-14. [Guo X S,Hu D F,Huang R C,Wei Z H,Duan J B,Wei X F,Fan X J,Miao Z W.2020. Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect. Natural Gas Industry, 40(5): 1-14] [7] 韩波,冯菊芳,何治亮,田海芹,朱爽,王晓涛. 2017. 四川盆地下寒武统豹斑灰岩成因机理及其对储层的影响. 石油与天然气地质, 38(4): 764-775,783. [Han B,Feng J F,He Z L,Tian H Q,Zhu S,Wang X T.2017. Origin of the Lower Cambrian leopard-pattern limestones and its influence on reservoirs in the Sichuan Basin. Oil and Gas Geology, 38(4): 764-775,783] [8] 韩月卿,张军涛,何治亮,金振奎,韩文彪,高平,郝运轻,孙炜,武重阳. 2023. 川西中二叠统栖霞组白云岩特征与成因. 石油与天然气地质, 44(1): 75-88. [Han Y Q,Zhang J T,He Z L,Jin Z K,Han W B,Gao P,Hao Y Q,Sun W,Wu C Y.2023. Characteristics and genesis of the Middle Permian Qixia Formation dolostone in western Sichuan Basin. Oil and Gas Geology, 44(1): 75-88] [9] 何治亮,马永生,张军涛,朱东亚,钱一雄,丁茜,陈代钊. 2020. 中国的白云岩与白云岩储层: 分布、成因与控制因素. 石油与天然气地质, 41(1): 1-14. [He Z L,Ma Y S,Zhang J T,Zhu D Y,Qian Y X,Ding Q,Chen D Z.2020. Distribution,genetic mechanism and control factors of dolomite and dolomite reservoirs in China. Oil and Gas Geology, 41(1): 1-14] [10] 胡文瑄,陈琪,王小林,曹剑. 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818. [Hu W X,Chen Q,Wang X L,Cao J.2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs. Oil and Gas Geology, 31(6): 810-818] [11] 胡忠贵,郑荣才,胡九珍,文华国,李瑜,文其兵,徐发波. 2009. 川东—渝北地区黄龙组白云岩储层稀土元素地球化学特征. 地质学报, 83(6): 782-790. [Hu Z G,Zheng R C,Hu J Z,Wen H G,Li Y,Wen Q B,Xu F B.2009. Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing area. Acta Geologica Sinica, 83(6): 782-790] [12] 黄思静,QING Hairuo,裴昌蓉,胡作维,吴素娟,孙治雷. 2006. 川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体. 岩石学报, 22(8): 2123-2132. [Huang S J,Qing H R,Pei C R,Hu Z W,Wu S J,Sun Z L.2006. Strontium concentration,isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic,eastern Sichuan of China. Acta Petrologica Sinica, 22(8): 2123-2132] [13] 焦存礼,何治亮,邢秀娟,卿海若,何碧竹,李程成. 2011. 塔里木盆地构造热液白云岩及其储层意义. 岩石学报, 27(1): 277-284. [Jiao C L,He Z L,Xing X J,Qing H R,He B Z,Li C C.2011. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin. Acta Petrologica Sinica, 27(1): 277-284] [14] 雷国良,王长生,钱志鑫,张忠敏,杨正礼,漆亮. 1994. 贵州岩溶沉积物稀土元素地球化学研究. 矿物学报, 14(3): 298-308. [Lei G L,Wang C S,Qian Z X,Zhang Z M,Yang Z L,Qi L.1994. REE geochemistry of karst sediments in Guizhou Province. Acta Mineralogica Sinica, 14(3): 298-308] [15] 黎霆,诸丹诚,杨明磊,李平平,邹华耀. 2021. 热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响. 石油与天然气地质, 42(3): 639-651. [Li T,Zhu D C,Yang M L,Li P P,Zou H Y.2021. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin. Oil and Gas Geology, 42(3): 639-651] [16] 李红,李飞,龚峤林,曾楷,邓嘉婷,王浩铮,苏成鹏. 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报, 39(3): 525-539. [Li H,Li F,Gong Q L,Zeng K,Deng J T,Wang H Z,Su C P.2021. Morphological characteristics and provenance significance of heavy minerals in the mixed siliciclastic-carbonate sedimentation: a case study from the Xiannüdong Formation,Cambrian(Series 2),northern Sichuan. Acta Sedimentologica Sinica, 39(3): 525-539] [17] 李雅兰,李飞,吕月健,王夏,王曾俊,李红,易楚恒,李杨凡,曾伟,李怡霖. 2024. 陕南勉县寒武系仙女洞组生物礁岩相学及古环境分析. 沉积学报, 42(2): 608-618. [Li Y L,Li F,Lü Y J,Wang X,Wang Z J,Li H,Yi C H,Li Y F,Zeng W,Li Y L.2024. Petrographic features and paleoenvironmental significance of the Lower Cambrian reef in the Xiannüdong Formation,Mian County,Southern Shaanxi. Acta Sedimentologica Sinica, 42(2): 608-618] [18] 李杨凡,李飞,王夏,李翔,李怡霖,王曾俊,李雅兰,易楚恒,曾伟. 2023. 上扬子北缘寒武纪早期后生动物礁特征及古环境意义. 地球科学, 48(11): 4321-4334. [Li Y F,Li F,Wang X,Li X,Li Y L,Wang Z J,Li Y L,Yi C H,Zeng W.2023. Sedimentary characteristics and paleoenvironmental significance of Early Cambrian metazoan reefs in northern margin of Upper Yangtze Block. Earth Science, 48(11): 4321-4334] [19] 李耀西,宋礼生,周志强. 1975. 大巴山西段早古生代地层志. 北京: 地质出版社,1-232. [Li Y X,Song L S,Zhou Z Q.1975. Early Paleozoic Stratigraphy of Western Daba Mountains. Beijing: Geological Publishing House,1-232] [20] 刘梦瑶,齐永安,史云鹤,高星,苏中堂,张立军. 2020. 华北寒武纪—奥陶纪豹皮状碳酸盐岩系生物扰动成因. 沉积学报, 38(1): 91-103. [Liu M Y,Qi Y A,Shi Y H,Gao X,Su Z T,Zhang L J.2020. Formation mechanism of Cambrian-Ordovician bioturbated dolomites in North China. Acta Sedimentologica Sinica, 38(1): 91-103] [21] 刘树根,李智武,刘顺,罗玉宏,徐国强,戴国汗,龚昌明,雍自权. 2006. 大巴山前陆盆地—冲断带的形成演化. 北京: 地质出版社,51-75. [Liu S G,Li Z W,Liu S,Luo Y H,Xu G Q,Dai G H,Gong C M,Yong Z Q.2006. The Formation and Evolution of Foreland Basin-thrust Belt in Daba Mountains. Beijing: Geological Publishing House,51-75] [22] 马永生,蔡勋育,李国雄. 2005. 四川盆地普光大型气藏基本特征及成藏富集规律. 地质学报, 79(6): 858-865. [Ma Y S,Cai X Y,Li G X.2005. Basic characteristics and concentration of the Puguang Gas Field in the Sichuan Basin. Acta Geologica Sinica, 79(6): 858-865] [23] 齐永安,孟瑶,代明月,李妲. 2014. 豫西登封地区寒武系第二统朱砂洞组生物成因的豹斑构造. 地质科技情报, 33(5): 1-8. [Qi Y A,Meng Y,Dai M Y,Li D.2014. Biogenic leopard patch structures from the Zhushadong Formation(Cambrian Series 2),Dengfeng area,western Henan. Geological Science and Technology Information, 33(5): 1-8] [24] 钱一雄,张克银,陈跃,陈强路,田蜜,尤东华,罗宇. 2016. 塔里木盆地东北部中上奥陶统却尔却克群深水碳酸盐岩及白云岩化. 古地理学报, 18(1): 21-38. [Qian Y X,Zhang K Y,Chen Y,Chen Q L,Tian M,You D H,Luo Y.2016. Deep-water carbonate rocks and their dolomitization of the Middle and Upper Ordovician Queerquek Formation in northeastern Tarim Basin. Journal of Palaeogeography(Chinese Edition), 18(1): 21-38] [25] 沈安江,赵文智,胡安平,佘敏,陈娅娜,王小芳. 2015. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. [Shen A J,Zhao W Z,Hu A P,She M,Chen Y N,Wang X F.2015. Major factors controlling the development of marine carbonate reservoirs. Petroleum Exploration and Development, 42(5): 545-554] [26] 谭秀成,肖笛,陈景山,李凌,刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. [Tan X C,Xiao D,Chen J S,Li L,Liu H.2015. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography(Chinese Edition), 17(4): 441-456] [27] 魏柳斌,王宗延,李漪,庞志超,王前平,包洪平,杨琦琦,王振,苏中堂,张立军. 2023. 豹皮(斑)状碳酸盐岩分类与成因初探: 以鄂尔多斯盆地奥陶系马家沟组四段为例. 古地理学报, 26(4): 880-894. [Wei L B,Wang Z Y,Li Y,Pang Z C,Wang Q P,Bao H P,Yang Q Q,Wang Z,Su Z T,Zhang L J.2023. Classification of Leopard skin(spot)carbonate rock and their formation mechanism: a case study of the Member 4 of Middle Ordovician Majiagou Formation in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 26(4): 880-894] [28] 魏显贵,杜思清,刘援朝,吴德超. 1997. 米仓山推覆构造的结构样式及演化特征. 矿物岩石,17(增): 114-122. [Wei X G,Du S Q,Liu Y C,Wu D C.1997. Tectonic styles and evolution of Micangshan Nappe tectonics. Mineralogy and Petrology,17(S): 114-122] [29] 徐妍,杨雪飞,唐浩,伍坤宇,唐锐锋,潘爽,杜忆. 2023. 川中地区龙王庙组花斑白云岩储层特征及成因机理. 天然气地球科学, 34(3): 402-417. [Xu Y,Yang X F,Tang H,Wu K Y,Tang R F,Pan S,Du Y.2023. Reservoir characteristics and genetic mechanism of mottled dolomite of Longwangmiao Formation in central Sichuan Basin. Natural Gas Geoscience, 34(3): 402-417] [30] 杨友运,叶俭. 1996. 陕西西乡杨家沟早寒武世的生物礁. 西北地质, 17(2): 1-5. [Yang Y Y,Ye J.1996. Early Cambrian reef in Yangjiagou,Xixiang,Shaanxi Province. Northwestern Geology, 17(2): 1-5] [31] 张岳桥,施炜,李建华,王瑞瑞,李海龙,董树文. 2010. 大巴山前陆弧形构造带形成机理分析. 地质学报, 84(9): 1300-1315. [Zhang Y Q,Shi W,Li J H,Wang R R,Li H L,Dong S W.2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300-1315] [32] 朱光有,李茜. 2023. 白云岩成因类型与研究方法进展. 石油学报, 44(7): 1167-1190. [Zhu G Y,Li X.2023. Progress in genetic types and research methods of dolomite. Acta Petrolei Sinica, 44(7): 1167-1190] [33] 邹才能,杜金虎,徐春春,汪泽成,张宝民,魏国齐,王铜山,姚根顺,邓胜徽,刘静江,周慧,徐安娜,杨智,姜华,谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293. [Zou C N,Du J H,Xu C C,Wang Z C,Zhang B M,Wei G Q,Wang T S,Yao G S,Deng S H,Liu J J,Zhou H,Xu A N,Yang Z,Jiang H,Gu Z D.2014. Formation,distribution,resource potential and discovery of the Sinian-Cambrian giant gas field,Sichuan Basin,SW China. Petroleum Exploration and Development, 41(3): 278-293] [34] 曾楷,李飞,龚峤林,唐浩,苏成鹏,车正强,邓嘉婷,胡广,李凌,曾伟,谭秀成. 2020. 寒武系第二统仙女洞组混合沉积特征及古环境意义: 以川北旺苍唐家河剖面为例. 沉积学报, 38(1): 166-181. [Zeng K,Li F,Gong Q L,Tang H,Su C P,Che Z Q,Deng J T,Hu G,Li L,Zeng W,Tan X C.2020. Characteristics and paleoenvironmental significance of mixed siliciclastic-carbonate sedimentation in the Xiannüdong Formation,Cambrian(Series 2): a case study from the Tangjiahe Section,Wangcang,northern Sichuan. Acta Sedimentologica Sinica, 38(1): 166-181] [35] Al-Aasm I S,Mrad C,Packard J.2019. Fluid compartmentalization of Devonian and Mississippian dolostones,Western Canada Sedimentary Basin: petrologic and geochemical evidence from fracture mineralization. Canadian Journal of Earth Sciences, 56(3): 265-305. [36] Allan J R,Wiggins W D.1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists: 1-110. [37] Bau M.1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4): 219-230. [38] Bau M,Möller P.1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite,magnesite and siderite. Mineralogy and Petrology, 45(3): 231-246. [39] Braithwaite C J,Rizzi G,Darke G.2004. The geometry and petrogenesis of dolomite hydrocarbon reservoirs: introduction. Geological Society,London,Special Publications, 235(1): 1-6. [40] Budd D A.1997. Cenozoic dolomites of carbonate islands: their attributes and origin. Earth-Science Reviews, 42(1): 1-47. [41] Cai C F,Li K K,Li H T,Zhang B S.2009. Evidence for cross-formational hot brine flow from integrated87Sr/86Sr,REE and fluid inclusions of the Ordovician veins in central Tarim,China. Applied Geochemistry, 23(8): 2226-2235. [42] Davies G R,Smith Jr L B.2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin, 90(11): 1641-1690. [43] Debruyne D,Hulsbosch N,Muchez P.2016. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system. Ore Geology Reviews, 72(1): 232-252. [44] Dong Y P,Liu X M,Santosh M,Chen Q,Zhang X N,Li W,He D F,Zhang G W.2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block,China: constraints from zircon U-Pb geochronology and geochemistry. Precambrian Research, 196-197: 247-274. [45] Folk R L.1980. Petrology of Sedimentary Rocks. Austin: Hemphill Publishing Company,1-182. [46] Gingras M K,Pemberton S G,Muelenbachs K,Machel H.2004. Conceptual models for burrow-related,selective dolomitization with textural and isotopic evidence from the Tyndall Stone,Canada. Geobiology, 2(1): 21-30. [47] Gong Q L,Li F,Lu C J,Wang H Z,Tang H.2021. Tracing seawater-and terrestrial-sourced REE signatures in detritally contaminated,diagenetically altered carbonate rocks. Chemical Geology, 570: 120169. [48] Gregg J M,Sibley D F.1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture. Journal of Sedimentary Research, 54(3): 908-931. [49] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62(6): 1749-1769. [50] Hirani J,Bastesen E,Boyce A,Corlett H,Eker A,Gawthorpe R,Hollis C,Korneva I,Rotevatn A.2018. Structural controls on non fabric-selective dolomitization within rift-related basin-bounding normal fault systems: insights from the Hammam Faraun Fault,Gulf of Suez,Egypt. Basin Research, 30(5): 990-1014. [51] Hollis C,Bastesen E,Boyce A,Corlett H,Gawthorpe R,Hirani J,Rotevatn A,Whitaker F.2017. Fault-controlled dolomitization in a rift basin. Geology, 45(3): 219-222. [52] Horita J.2014. Oxygen and carbon isotope fractionation in the system dolomite-water-CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129(1): 111-124. [53] Hsü K J,Siegenthaler C.1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11-25. [54] Jébrak M.1997. Hydrothermal breccias in vein-type ore deposits: a review of mechanisms,morphology and size distribution. Ore Geology Reviews, 12(3): 111-134. [55] Kendall A C.1977. Origin of dolomite mottling in Ordovician limestones from Saskatchewan and Manitoba. Bulletin of Canadian Petroleum Geology, 25(3): 480-504. [56] Koeshidayatullah A,Corlett H,Hollis C.2021. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record. Earth-Science Reviews, 220: 103751. [57] Land L S.1985. The origin of massive dolomite. Journal of Geological Education, 33(2): 112-125. [58] Lawrence M G,Greig A,Collerson K D,Kamber B S.2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12(1): 39-72. [59] Li F,Webb G E,Algeo T J,Kershaw S,Lu C J,Oehlert A M,Gong Q L,Pourmand A,Tan X C.2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chemical Geology, 509: 163-177. [60] Li H,Li F,Li X,Zeng K,Gong Q L,Yi C H,Wang Z J.2021. Development and collapse of the early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 583: 110665. [61] Li Y L,Li F,Kershaw S,Burne R,Wang X,Lu C J,Liao J J,Li Y F,Wang Z J,Li Y L.2023. Extensive occurrences of lower Cambrian red beds in South China: composition,characteristics,and implications for global environmental change. Marine and Petroleum Geology, 157: 106475. [62] Lonnee J,Machel H G.2006. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field,Middle Devonian Slave Point Formation,British Columbia,Canada. AAPG Bulletin, 90(11): 1739-1761. [63] Lu C J,Koeshidayatullah A,Li F,Cui H,Zou H Y,Swart P K.2024. A clumped isotope diagenetic framework for the Ediacaran dolomites: insights to fabric-specific geochemical variabilities. Sedimentology, 71(2): 546-572. [64] Lu Z Y,Chen H H,Qing H R,Chi G X,Chen Q L,You D H,Yin H,Zhang S Y.2017. Petrography,fluid inclusion and isotope studies in Ordovician carbonate reservoirs in the Shunnan area,Tarim Basin,NW China: implications for the nature and timing of silicification. Sedimentary Geology, 359: 29-43. [65] Maloof A C,Porter S M,Moore J L,Dudás F ö,Bowring S A,Higgins J A,Fike D A,Eddy M P.2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122(11-12): 1731-1774. [66] Manche C J,Kaczmarek S E.2019. Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas,USA. Geology, 47(6): 586-590. [67] Martín-Martín J D,Travé A,Gomez-Rivas E,Salas R,Sizun J-P,Vergés J,Corbella M,Stafford S L,Alfonso P.2015. Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation(Maestrat Basin,E Spain): petrology and geochemistry constrains. Marine and Petroleum Geology, 65: 83-102. [68] Nicolaides S.1995. Origin and modification of Cambrian dolomites(Red Heart Dolomite and Arthur Creek Formation),Georgina Basin,central Australia. Sedimentology, 42(2): 249-266. [69] Nozaki Y,Zhang J,Amakawa H.1997. The fractionation between Y and Ho in the marine environment. Earth and Planetary Science Letters, 148(1-2): 329-340. [70] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O.2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [71] Qing H R,Mountjoy E.1992. Large-scale fluid flow in the Middle Devonian Presqu’ile barrier,Western Canada Sedimentary Basin. Geology, 20(10): 903-906. [72] Radke B M,Mathis R L.1980. On the formation and occurrence of saddle dolomite. Journal of Sedimentary Research, 50(4): 1149-1168. [73] Saller A H.1984. Petrologic and geochemical constraints on the origin of subsurface dolomite,Enewetak Atoll: an example of dolomitization by normal seawater. Geology, 12(4): 217-220. [74] Shah M M,Nader F H,Garcia D,Swennen R,Ellam R.2012. Hydrothermal dolomites in the early Albian(Cretaceous)Platform Carbonates(N.W. Spain): nature and origin of dolomites and dolomitising fluids. Oil & Gas Science and Technology-Rev.IFP Energies nouvelles, 67(1): 97-122. [75] Shelton K L,Gregg J M,Johnson A W.2009. Replacement dolomites and ore sulfides as recorders of multiple fluids and fluid sources in the Southeast Missouri Mississippi Valley-type district: halogen-87Sr/86Sr-δ18O-δ34S systematics in the Bonneterre Dolomite. Economic Geology, 104(5): 733-748. [76] Smith Jr L B,Davies G R.2006. Structurally controlled hydrothermal alteration of carbonate reservoirs: introduction. AAPG Bulletin, 90(11): 1635-1640. [77] Swart P K.2015. The geochemistry of carbonate diagenesis: the past,present and future. Sedimentology, 62(5): 1233-1304. [78] Vasconcelos C,McKenzie J A,Bernasconi S,Grujic D,Tiens A J.1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220-222. [79] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1-81. [80] Webb G E,Nothdurft L D,Kamber B S,Kloprogge J,Zhao J X.2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [81] Wei A Y,Xue C D,Xiang K,Li J,Liao C,Akhter Q J.2015. The ore-forming process of the Maoping Pb-Zn deposit,northeastern Yunnan,China: constraints from cathodoluminescence(CL)petrography of hydrothermal dolomite. Ore Geology Reviews, 70: 562-577. |