[1] 龚再升,王国纯. 1997. 中国近海油气资源潜力新认识. 中国海上油气, 11(1): 1-12. [Gong Z S,Wang G C.1997. New thoughts upon petroleum resources potential. China Offshore Oil and Gas, 11(1): 1-12] [2] 郝诒纯,陈平富,万晓樵,董军社. 2000. 南海北部莺歌海—琼东南盆地晚第三纪层序地层与海平面变化. 现代地质, 14(3): 237-245. [Hao Y C,Chen P F,Wan X Q,Dong J S.2000. Late Tertiary sequence stratigraphy and sea level changes in Yinggehai-Qiongdongnan Basin. Geoscience, 14(3): 237-245] [3] 金庆焕. 1989. 南海地质与油气资源. 北京: 地质出版社,199-206. [Jin Q H.1989. South China Sea Geology and Oil and Gas Resources. Beijing: Geological Publishing House,199-206] [4] 李颖虹,黄小平,岳维忠,林燕棠,邹仁林,黄晖. 2004. 西沙永兴岛珊瑚礁与礁坪生物生态学研究. 海洋与湖沼, 35(2): 176-182. [Li Y H,Huang X P,Yue W Z,Lin Y T,Zou L R,Huang H.2004. Ecological study on coral reef and intertidal benthos around Yongxing island,South China Sea. Oceanologia et Limnologia Sinica, 35(2): 176-182] [5] 吕彩丽,姚永坚,吴时国,姚根顺. 2011. 南沙海区万安盆地中新世碳酸盐台地的地震响应与沉积特征. 地球科学, 36(5): 931-938. [Lü C L,Yao Y J,Wu S G,Yao G S. 2011. Seismic responses and sedimentary characteristics of the Miocene carbonate platform in the southern South China Sea. Earth Science, 36(5): 931-938] [6] 吕修祥,金之钧. 2000. 碳酸盐岩油气田分布规律. 石油学报, 21(3): 8-12. [Lü X X,Jin Z J. 2000. Distribution law of carbonate oil and gas fields. Acta Petrolei Sinica, 21(3): 8-12] [7] 王崇友,何希贤,裘松余. 1979. 西沙群岛西永一井碳酸盐岩地层与微体古生物的初步研究. 石油实验地质,(1):23-39. [Wang C Y,He X X,Qiu S Y.1979. A preliminary study of carbonate rocks and micropalaeontology in the well XiYong I well. Petroleum Experimental Geology,(1):23-39] [8] 王振峰,时志强,张道军,黄可可,尤丽,段雄,李胜勇. 2015a. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因. 地球科学: 中国地质大学学报, 40(4): 633-644. [Wang Z F,Shi Z Q,Zhang D J,Huang K K,You L,Duan X,Li S Y.2015a. Microscopic features and genesis for Miocene to Pliocene dolomite in well Xike-1,Xisha Island. Earth Science-Journal of China University of Geosciences, 40(4): 633-644] [9] 王振峰,崔宇驰,邵磊,张道军,董茜茜,刘新宇,张传伦,尤丽,肖安涛. 2015b. 西沙地区碳酸盐台地发育过程与海平面变化: 基于西科1井 BIT 指标分析数据. 地球科学: 中国地质大学学报, 40(5): 900-908. [Wang Z F,Cui Y C,Shao L,Zhang D J,Dong Q Q,Liu X Y,Zhang C L,YouL,Xiao A T.2015b. Carbonate platform development and sea-level variations of Xisha Islands based on BIT index of well Xike-1. Earth Science-Journal of China University of Geosciences, 40(5): 900-908] [10] 魏喜,祝永军,许红,赵国春,李玉喜. 2006. 西沙群岛新近纪白云岩形成条件的探讨: C、O同位素和流体包裹体证据. 岩石学报, 22(9): 2394-2404. [Wei X,Zhu Y J,Xu H,Zhao G C,Li Y X.2006. Discussion on Neogene dolostone forming condition in Xisha Islands: Evidences from isotope C and O and fluid inclosures. Acta Petrologica Sinica, 22(9): 2394-2404] [11] 吴时国,袁圣强,董冬冬,米立军,张功成. 2009. 南海北部深水区中新世生物礁发育特征. 海洋与湖沼, 40(2): 117-121. [Wu S G,Yuan S Q,Dong D D,Mi L J,Zhang G C.2009. The Miocene reef development characteristics in northern South China Sea. Oceanologia et Limnologia Sinica, 40(2): 117-121] [12] 吴时国,朱伟林,马永生. 2018. 南海半封闭边缘海碳酸盐台地兴衰史. 海洋地质与第四纪地质, 38(6): 4-20. [Wu S G,Zhu W L,Ma Y S.2018. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas. Marine Geology & Quaternary Geology, 38(6): 4-20] [13] 张明书. 1989. 西沙生物礁碳酸盐沉积地质学研究. 北京: 科学出版社,9-12. [Zhang M S.1989. A Study of Sedimentary Geology of Xisha Reef Carbonates. Beijing: Science Press,9-12] [14] 翟世奎,米立军,沈星,刘新宇,修淳,孙志鹏,曹佳琪. 2015. 西沙石岛生物礁的矿物组成及其环境指示意义. 地球科学: 中国地质大学学报, 40(4): 597-605. [Zhai S K,Mi L J,Shen X,Liu X Y,Xiu C,Sun Z P,Cao J Q.2015. Mineral composition and environment implications in reef of Shidao Island,Xisha. Earth Science-Journal of China University of Geosciences, 40(4):597-605] [15] 朱伟林,解习农,王振峰,张道军,张成立,曹立成,邵磊. 2017. 南海西沙隆起基底成因新认识. 中国科学: 地球科学, 47: 1460-1468. [Zhu W L,Xie X N,Wang Z F,Zhang D J,Zhang C L,Cao L C,Shao L.2017. New insights on the origin of the basement of the Xisha Uplift,South China Sea. Science China Earth Sciences, 47: 1460-1468] [16] 朱袁智,沙庆安,郭丽芬. 1997. 南沙群岛永暑礁新生代珊瑚礁地质. 北京: 科学出版社,134. [Zhu Y Z,Sha Q A,Guo L F.1997. Cenozoic Coral Reef Geology of Yongshu Reef,Nansha Islands. Beijing: Science Press,134] [17] Beck J W,Edwards R L,Ito E,Taylor F W,Recy J,Rougerie F,Joannot P,Henin C.1992. Sea-Surface temperature from coral skeletal strontium/calcium ratios. Science, 257(5070): 644-647. [18] Bertrand P,Pedersen T F,Martinez P,Calvert S,Shimmield G.2000. Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes. Global Biogeochemical Cycles, 14(1): 341-355. [19] Erlich R N,Longo A P,Hyare S.1993. Response of carbonate platform margins to drowning: Evidence of environmental collapse. AAPG Memoir,57:241-266. [20] Fallon S J,White J C,Mcculloch M T.2002. Porites corals as recorders of mining and environmental impacts: Misima Island,Papua New Guinea. Geochimica et Cosmochimica Acta, 66(1): 45-62. [21] Fournier F,Borgomano J,Montaggioni L F.2005. Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high-resolution 3D seismic and well data in the Malampaya gas field(offshore Palawan,Philippines). Sedimentary Geology, 175(1): 189-215. [22] Haq B U.1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes: An integrated approach. In: Wilgus C K,Hastings B S,Posamentier H,Wagoner J V,Ross C A,Kendall C G S C(eds). Spec. Publ. Soc. Econ. Paleontol. Mineral, 42:71-108. [23] Hopmans E C,Weijers J W H,Schefuß E,Herfort L,Sinninghe Damsté J S,Schouten S.2004. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth & Planetary Science Letters, 224(1-2): 0-116. [24] Kamenos N A,Cusack M,Huthwelker T,Lagarde P,Scheibling R E.2009. Mg-lattice associations in red coralline algae. Geochimica et Cosmochimica Acta, 73(7): 1901-1907. [25] Kinsey D W,Davies P J.1979. Effects of elevated nitrogen and phosphorus on coral reef growth. Limnology and Oceanography, 24(5): 935-940. [26] Larsen H C,Mohn G,Nirrengarten M,Sun Z,StockJ,Jian Z,Klaus A,Alvarez-Zarikian C A,Boaga J,Bowden S A,Briais A,Chen Y,Cukur D,Dadd K,Ding W,Dorais M,Ferré E C,Ferreira F,Furusawa A,Gewecke A,Hinojosa J,Hfig T W,Hsiung K H,Huang B,Huang E,HuangX L,Jiang S,Jin H,Johnson B G,Kurzawski R M,Lei C,Li B,Li L,Li Y,Lin J,Liu C,Liu C,Liu Z,Luna A J,Lupi C,McCarthy A,Ningthoujam L,Osono N,Peate D W,Persaud P,Qiu N,Robinson C,Satolli S,Sauermilch I,Schindlbeck J C,Skinner S,Straub S,SuX,Su C,Tian L,van der Zwan F M,Wan S,Wu H,Xiang R,Yadav R,Yi L,Yu P S,Zhang C,Zhang J,Zhang Y,Zhao N,Zhong G,Zhong L.2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience, 11: 782-789. [27] Li R,Qiao P J,Cui Y C,Zhang D J,Liu X Y,Shao L.2018. Composition and diagenesis of Pleistocene aeolianites at Shidao,Xisha Islands: Implications for palaeoceanography and palaeoclimate during the last glacial period. Palaeogeography,Palaeoclimatology,Palaeoecology, 490(15): 604-616. https://doi.org/10.1016/j.palaeo.2017.11.049. [28] Lowenstein T K,Timofeeff M N,Brennan S T,Hardie L A,Demicco R V.2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 294(5544): 1086-1088. [29] Riding R.2002. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews, 58(1-2): 163-231. [30] Saltzman M R.2005. Phosphorus,nitrogen,and the redox evolution of the Paleozoic oceans. Geology, 33(7): 573-576. [31] Schouten S,Hopmans E C,Pancost R D,Damsté J S S.2000. Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences, 97(26): 14421-14426. [32] Schouten S,Hopmans E C,Schefuß E,Damsté J S S.2002. Distributional variations in marine Crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?. Earth and Planetary Science Letters, 204(1-2): 265-274. [33] Schouten S,Hopmans E C,Baas M,Boumann H,Standfest S,Könneke M,Stahl D A.2008. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus”: A cultivated representative of the Cosmopolitan Mesophilic Group I Crenarchaeota. Applied Environmental Microbiology, 74(8): 2433-2440. [34] Shao L,Cui Y C,Qiao P J,Zhang D J,Liu X Y,Zhang C L.2017a. Sea-level changes and carbonate platform evolution of the Xisha Islands(South China Sea)since the Early Miocene. Palaeogeography,Palaeoclimatology,Palaeoecology, 485: 504-516. [35] Shao L,Li Q Y,Zhu W L,Zhang D J,Qiao P J,Liu X Y,You L,Cui Y C,Dong X X.2017b. Neogene Carbonate platform development in the NW South China Sea: Litho-,bio- and chemo-stratigraphic evidenve. Marine Geology, 385: 233-243. [36] SteuerS,Franke D,Meresse F,Savva D,Pubellier M,Auxietre J L,Aurelio M.2013. Time constraints on the evolution of southern Palawan Island,Philippines from onshore and offshore correlation of Miocene limestones. Journal of Asian Earth Sciences, 76: 412-427. [37] Sinninghe Damsté J S,Schouten S,Hopmans E C,van Duin A C T,Geenevasen J A J.2002. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membranelipid of cosmopolitan pelagic crenarchaeota. The Journal of Lipid Research, 43(10): 1641-1651. [38] Taylor B,Hayes D E.1983. Origin and history of the South China Sea basin. Washington Dc American Geophysical Union Geophysical Monograph, 27: 23-56. [39] Tian J,Zhao Q H,Wang P X,Li Q Y,Cheng X. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography,23PA3210. 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography,23PA3210. http://dx.doi.org/10.1029/2007PA001552. [40] Wang P X,Li Q Y.2009. The South China Sea. Developments in Paleoenvironmental Research, 30: 165-178. [41] Wignall P B,Twitchett R J.1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. [42] Wilson M E J.2008. Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeography,Palaeoclimatology,Palaeoecology, 265(3-4): 262-274. [43] Wilson M E J.2012. Equatorial carbonates: An earth systems approach. Sedimentology, 59(1): 1-31. [44] Wu S G,Yang Z,Wang D W,Lü F L,Lüdmanman T,Fulthorpe C,Wang B.2014. Architecture,development and geological control of the Xisha carbonate platforms,northwestern South China Sea. Marine Geology, 350: 71-83. [45] Wyndham T,Mcculloch M,Fallon S,Alibert C.2004. High-resolution coral records of rare earth elements in coastal seawater: Biogeochemical cycling and a new environmental proxy. Geochimica et Cosmochimica Acta, 68(9): 2067-2080. [46] Yao Y J,Liu H L,Yang C P,Han B,Tian J J,Yin Z X,Gong J L,Xu Q Y.2012. Characteristics and evolution of Cenozoic sediments in the Liyue Basin,SE South China Sea. Journal of Asian Earth Sciences,60:114-129. [47] Yi L,Jian Z M,Liu X Y,Zhu Y H,Zhang D J,Wang Z F,Deng C L.2018. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands,South China Sea. Science Bulletin, 63(9): 564-573. [48] Zachos J,Pagani M,Sloan L,Thomas E,Billups K.2001. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 292(5517): 686-693. |