[1] 成卫青,卢艳红. 2015. 一种基于最大最小距离和SSE的自适应聚类算法. 南京邮电大学学报(自然科学版), 35(2): 102-107. [Cheng W Q,Lu Y H.2015. Adaptive clustering algorithm based on maximum and minimum distances,and SSE. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 35(2): 102-107] [2] 段威,罗程飞,刘建章,田金强,吕波,丁亮. 2015. 莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义. 地球科学, 40(9): 1517-1528. [Duan W,Luo C F,Liu J Z,Tian J Q,Lü B, Ding L.2015. Effect of overpressure formation on reservoir diagenesis and its geological significance to LD block of Yinggehai Basin. Earth Science, 40(9): 1517-1528] [3] 范彩伟,刘爱群,吴云鹏,侯静娴. 2022. 莺歌海盆地乐东10区新近系黄流组储层天然气充注与超压演化史. 石油与天然气地质, 43(6): 1370-1381. [Fan C W,Liu A Q,Wu Y P,Hou J X.2022. Gas charging and overpressure evolution history of the Neogene Huangliu Formation reservoir in Ledong 10 area,Yinggehai Basin. Oil & Gas Geology, 43(6): 1370-1381] [4] 黄仁东,韩明,张小军,张海彬,金浩,华正阳. 2011. 基于Fisher判别法岩溶塌陷倾向性等级分类预测. 中国安全科学学报, 21(9): 70-76. [Huang R D,Han M,Zhang X J,Zhang H B,Jing H,Hua Z Y.2011. Classification prediction of karst collapse tendency level based on fisher discriminant analysis method. China Safty Science Journal, 21(9): 70-76] [5] 李超,罗晓容,范彩伟,张立宽,刘爱群,李虎,李俊. 2021. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示. 地质科学, 56(4): 1034-1051. [Li C,Luo X R,Fan C W,Zhang L K,Liu A Q,Li H,Li J.2021. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 56(4): 1034-1051] [6] 李建平,张小庆,李莹. 2022. 基于XGBoost的低渗油田储层粒度预测. 计算机系统应用, 31(2): 241-245. [Li J P,Zhang X Q,Li Y.2022. Prediction of reservoir grain size in low permeability oilfield based on XGBoost. Computer Systems & Applications, 31(2): 241-245] [7] 李伟,刘平,艾能平,邵远,侯静娴. 2020. 莺歌海盆地乐东地区中深层储层发育特征及成因机理. 岩性油气藏, 32(1): 19-26. [Li W,Lu P,Ai N P,Shao Y,Hou J X.2020. Development characteristics and genetic mechanism of med-deep reservoirs in Ledong area,Yinggehai Basin. Lithologic Reservoirs, 32(1): 19-26] [8] 梁则亮,毛晨飞,肖华,陈国军,高衍武,高明,张啸. 2022. 岩石物理相约束下的砂砾岩岩性粒级精细划分: 以准噶尔盆地乌尔禾组为例. 长江大学学报(自然科学版), 19(4): 28-37. [Liang Z L,Mao C F,Xiao H,Chen G J,Gao Y W,Gao M,Zhang X.2022. Fine classification of lithologic grade of sand-conglomerate under the constraint of petrophysical facies: taking the Wuerhe Formation in the Junggar Basin as an example. Journal of Yangtze University(Natural Science Edition), 19(4): 28-37] [9] 刘珊珊,汪志明. 2022. 基于机器学习方法的多采样点储层粒度剖面预测. 石油科学通报, 7(1): 93-105. [Liu S S,Wang Z M.2022. Reservoir grain size profile prediction of multiple sampling points based on a machine learning method. Petroleum Science Bulletin, 7(1): 93-105] [10] 刘为,杨希冰,张秀苹,段亮,邵远,郝德峰. 2019. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素. 岩性油气藏, 31(2): 75-82. [Liu W,Yang X B,Zhang X P,Duan L,Shao Y,Hao D F.2019. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin. Lithologic Reservoirs, 31(2): 75-82] [11] 刘毅,陆正元,吕晶,谢润成. 2017. 主成分分析法在泥页岩地层岩性识别中的应用. 断块油气田, 24(3): 360-363. [Liu Y,Lu Z Y,Lü J,Xie R C.2017. Application of principal component analysis method in lithology identification for shale formation. Fault-Block Oil & Gas Field, 24(3): 360-363] [12] 罗利,朱心万,常俊,周政英,胡振平. 2007. 苏5、桃7区块不同粒度碎屑岩测井识别方法. 天然气工业, 27(12): 36-38. [Luo L,Zhu X W,Chang J,Zhou Z Y,Hu Z P.2007. Logging recognition methods for clastic rocks with different granularities in blocks SU-5 and TAO-7. Natural Gas Industry, 27(12): 36-38] [13] 罗歆,闫建平,王军,耿斌,王敏,钟广海,张帆,李志鹏,高松洋. 2023. 基于FMI图像深度学习的砂砾岩体沉积微相识别方法: 以东营凹陷北带 Y920区块沙四上亚段为例. 沉积学报, 41(4): 1138-1152. [Luo X,Yan J P,Wang J,Geng B,Wang M,Zhong G H,Zhang F,Li Z P,Gao S Y.2023. A method for identifying sedimentary microfacies in a sandy conglomerate body on deep learning of FMI images: case study of upper submember of the Fourth member,Shahejie Formation in Y920 block,northern zone,Dongying Sag. Acta Sedimentologica Sinica, 41(4): 1138-1152] [14] 马峥,张春雷,高世臣. 2017. 主成分分析与模糊识别在岩性识别中的应用. 岩性油气藏, 29(5): 127-133. [Ma Z,Zhang C L,Gao S C.2017. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs, 29(5): 127-133] [15] 毛倩茹,范彩伟,罗静兰,曹江骏,尤丽,符勇,李珊珊,史肖凡,吴仕玖. 2022. 超压背景下中深层砂岩储集层沉积—成岩演化差异性分析: 以南海莺歌海盆地中新统黄流组为例. 古地理学报, 24(2): 344-360. [Mao Q R,Fan C W,Luo J L,Cao J J,You L,Fu Y,Li S S,Shi X F,Wu S J.2022. Analysis of sedimentary-diagenetic evolution difference on middle-deep buried sandstone reservoirs under overpressure background: a case study of the Miocene Huangliu Formation in Yinggehai Basin,South China Sea. Journal of Palaeogeography(Chinese Edition), 24(2): 344-360] [16] 任建业,雷超. 2011. 莺歌海—琼东南盆地构造—地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. [Ren J Y,Lei C.2011. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics,54(12),3303-3314] [17] 孙予舒,黄芸,梁婷,季汉成,向鹏飞,徐新蓉. 2020. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别. 岩性油气藏, 32(4): 98-106. [Sun Y S,Huang Y,Liang T,Ji H C,Xiang P F,Xu X R.2020. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs, 32(4): 98-106] [18] 谭增驹,郑宏安,张超谟,刘子云. 1995. 利用粒度中值平均粒径研究陆源碎屑岩岩性与结构. 测井技术, 19(2): 130-134. [Tan Z J,Zheng H A,Zhang C M,Liu Z Y.1995. Study of the lithology and texture of terrigenous clastic rock with medium grain size and average grain diameter. Well Logging Technology, 19(2): 130-134] [19] 田艳,孙建孟,王鑫,田国栋. 2010. 利用逐步法和Fisher判别法识别储层岩性. 勘察地球物理进展, 33(2): 126-134. [Tian Y,Sun J M,Wang X,Tian G D.2010. Identifying reservoir lithology by step-by-step method and Fisher discriminant. Petroleum Reservoir Evaluation and Development, 33(2): 126-134] [20] 吴进波,张海荣,陈现. 2022. 核磁测井资料在岩石粒度反演中的应用. 海洋石油, 42(3): 67-73. [Wu J B,Zhang H R,Chen X.2022. The application of NMR logging data in the inversion of rock grain size. Offshore Oil, 42(3): 67-73] [21] 吴仕玫,范彩伟,招湛杰,代龙,邓孝亮,钟佳. 2019. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义. 地球科学, 44(8): 2686-2694. [Wu S M,Fan C W,Zhao Z J,Dai L,Deng X L,Zhong J.2019. Origin of carbonate cement in reservoirs of Ledong Area,Yinggehai Basin and its geological significance. Earth Science, 44(8): 2686-2694] [22] 谢晓庆,吴伟,程亮,赵莉,隋秀英,刘春雷. 2022. 复杂岩性储层渗透率建模中的应用. 工程地球物理学报, 19(3): 310-315. [Xie X Q,Wu W,Cheng L,Zhao L,Sui X Y,Liu C L.2022. Application of granularity analysis in permeability modeling of complex lithologic reservoir. Chinese Journal of Engineering Geophysics, 19(3): 310-315] [23] 谢玉洪. 2011. 莺歌海高温超压盆地压力预测模式及成藏新认识. 天然气工业, 31(12): 21-25. [Xie Y H.2011. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure. Natural Gas Industry, 31(12): 21-25] [24] 闫建平,蔡进功,赵铭海,李尊芝,徐冠华. 2011. 电成像测井在砂砾岩体沉积特征研究中的应用. 石油勘探与开发, 38(4): 444-451. [Yan J P,Cai J G,Zhao M H,Li Z Z,Xu G H.2011. Application of electrical image logging in the study of sedimentary characteristics of sandy conglomerates. Petroleum Exploration and Development, 38(4): 444-451] [25] 杨计海,黄保家,陈殿远. 2018. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力. 中国海上油气, 30(1): 11-21. [Yang J H,Huang B J,Chen D Y.2018. Accumulation condition and exploration potential of low porosity and ultra-low permeability sandstone gas reservoirs on the depression slope belt of Yinggehai Basin. China Offshore Oil and Gas, 30(1): 11-21] [26] 杨俊闯,赵超. 2019. K-Means聚类算法研究综述. 计算机工程与应用, 55(23): 7-14. [Yang J C,Zhao C.2019. Survey on K-Means clustering algorithm. Computer Engineering and Applications, 55(23): 7-14] [27] 杨楷乐,何胜林,杨朝强,王猛,张瑞雪,任双坡,赵晓博,姚光庆. 2023. 高温—超压—高CO2背景下致密砂岩储层成岩作用特征: 以莺歌海盆地LD10区新近系梅山组—黄流组为例. 岩性油气藏, 35(1): 83-95. [Yang K L,He S L,Yang Z Q,Wang M,Zhang R X,Ren S P,Zhao X B,Yao G Q.2023. Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: a case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin. Lithologic Reservoirs, 35(1): 83-95] [28] 杨宁,王贵文,赖锦,李鉴伦,苍丹,蒋其君. 2012. 应用伽马测井曲线小波变换计算粒度参数. 现代地质, 26(4): 778-783. [Yang N,Wang G W,Lai J,Li J L,Cang D,Jiang Q J.2012. Application of gamma curves wavelet transform to calculate grain size parameters. Geoscience, 26(4): 778-783] [29] 尤丽,范彩伟,吴仕玫,罗静兰,李才,代龙,李驰. 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. [You L,Fan C W,Wu S J,Luo J L,Li C,Dai L,Li C.2021. Genesis of carbonate cement and its relationship with fluid activity in the Ledong area,Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587] [30] 张强,李家金,王毛毛,唐湘飞. 2022. 基于改进主成分分析法的测井曲线岩性分层技术. 吉林大学学报(地球科学版), 52(4): 1369-1376. [Zhang Q,Li J J,Wang M M,Tang X F.2022. Logging curve rock layering technology based on improved principal component analysis. Journal of Jilin University(Earth Science Edition), 52(4): 1369-1376] [31] 张涛,莫修文. 2007. 基于交会图与模糊聚类算法的复杂岩性识别. 吉林大学学报(地球科学版),37(增刊1): 109-113. [Zhang T,Mo X W.2007. Complex lithologic identification based on cross plot and fuzzy clustering algorithm. Journal of Jilin University(Earth Science Edition),37(Supplement 1): 109-113] [32] 张焱,周永章,朱继田. 2015. 基于主成分的多重分形法在岩性识别中的应用. 中山大学学报(自然科学版), 54(3): 145-157. [Zhang Y,Zhou Y Z,Zhu J T.2015. Multi-fractal method's application based on principal component in lithology recognition. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(3): 145-157] [33] 赵军,肖承文,王淼,陈伟中. 2013. 测井资料在沉积物粒序反演中的应用. 地球科学, 38(4): 792-796. [Zhao J,Xiao C W,Wang M,Chen W Z.2013. Application of logging data to the sediment size-grading inversion. Earth Science, 38(4): 792-796] [34] 赵军,代新雪,古莉,祁新忠,陈伟中. 2016. 基于粒度控制的复杂储层渗透性建模方法. 吉林大学学报(地球科学版), 46(1): 279-285. [Zhao J,Dai X X,Gu L,Qi X Z,Chen W Z.2016. Method of permeability model establishment based on the complex reservoir controlled by particle-size. Journal of Jilin University(Earth Science Edition), 46(1): 279-285] [35] 赵笑笑,闫建平,王敏,何贤,钟光海,王军,耿斌,胡钦红,李志鹏. 2022. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法. 岩性油气藏, 34(1): 118-129. [Zhao X X,Yan J P,Wang M,He X,Zhong G H,Wang J,Geng B,Hu Q H,Li Z P.2022. Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag. Lithologic Reservoirs, 34(1): 118-129] [36] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Petrology. Beijing: Petroleum Industry Press] [37] Bloch S,Lander R H,Bonnell L.2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability. AAPG Bulletin, 86(2): 301-328. [38] Chen T Q,Guestrin C.2016. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco,California,USA: 785-794. [39] Conroy T.2010. Using nuclear magnetic resonance data for grain size estimation and expandable sand screen design. SPWLA 51st Annual Logging Symposium. [40] Faga A T,Oyeneyin B M.2000. Application of neural networks for improved gravel-pack design. SPE: 58722. [41] Folk R L,Ward W C.1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3-26. [42] Friedman G M,Johnson K G.1982. Exercises in Sedimentology. New York: John Wiley and Sons,68-83. [43] Hurst A R.1990. Natural gamma-ray spectrometry in hydrocarbon-bearing sandstones from the Norwegian Continental Shelf. Geological Society,London,Special Publications, 48(1): 211-222. [44] McManus J.1988. Grain Size Determination and Interpretation. Tucker Med. Techniques in Sedimentology. Oxford: Wiley Blackwell,63-85. [45] Xin Y,Wang G W,Liu B C,Ai Y,Cai D Y,Yang S W,Liu H K,Xie Y Q,Chen K J.2022. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211: 110-180. [46] Yuan G H,Cao Y C,Qiu L W.2017. Genetic mechanism of high-quality reservoirs in Permian tight fan delta conglomerates at the northwestern margin of the Junggar Basin,north western China. AAPG Bulletin, 101(12): 1995-2019. |