[1] 成贤康,孙蓓蕾,刘超,曾凡桂,解锡超,畅向东. 2021. 富锂煤层碎屑物源探讨: 以平朔矿区安家岭煤矿太原组煤层为例. 煤炭学报, 46(7): 2346-2359. [Cheng X K,Sun B L,Liu C,Zeng F G,Xie X C,Chang X D. 2021. Provenance of debris in lithium-rich coal seam: a case study of Taiyuan Group coal seam in Anjialing Coal Mine,Pingshuo mining area. Journal of China Coal Society, 46(7): 2346-2359] [2] 范二平,杨智文,高宇平,程岳宏,赵军. 2018. 宁武煤田北部构造特征及其控煤作用. 煤田地质与勘探, 46(4): 8-16. [Fan E P,Yang Z W,Gao Y P,Cheng Y H,Zhao J. 2018. Tectonic characteristics and their control on coal in the north of Ningwu coalfield. Coal Geology & Exploration, 46(4): 8-16] [3] 秦勇,王文峰,宋党育,张晓东. 2005. 山西平朔矿区上石炭统太原组11号煤层沉积地球化学特征及成煤微环境. 古地理学报, 7(2): 249-260. [Qing Y,Wang W F,Song D Y,Zhang X D. 2005. Geochemistry characteristics and sedimentary micro-environments of No.11 coal seam of the Taiyuan Formation of Upper Carboniferous in Pingshuo Mining District,Shanxi Province. Journal of Palaeogeography(Chinese Edition), 7(2): 249-260] [4] 邵龙义,郑明泉,侯海海,董大啸,王海生. 2018. 山西省石炭—二叠纪含煤岩系层序—古地理与聚煤特征. 煤炭科学技术, 46(2): 1-8. [Shao L Y,Zheng M Q,Hou H H,Dong D X,Wang H S. 2018. Characteristics sequence-palaeogeography and coal accumulation of Permo-Carboniferous coal measures in Shanxi Province. Coal Science and Technology, 46(2): 1-8] [5] 王华,陈钟惠,陆永潮. 2001. 山西河东煤田保德矿区太原组砂体特征及与煤聚集的关系. 地质学报, 75(4): 562-569. [Wang H,Chen Z H,Lu Y C. 2001. Sedimentary characteristics of the main sandstone body of the lower section of the Taiyuan Formation and its relation to coal accumulation of the Fugu-Baode Mine,Hedong Coalfield,western North China. Acta Geologica Sinica, 75(4): 562-569] [6] 王金喜. 2019. 宁武盆地石炭二叠系煤中锂富集的沉积控制. 中国矿业大学博士论文,40-67. [Wang J X. 2019. Sedimentary Control of Lithium Enrichment in Permo-Carboniferous Coals from Ningwu Basin,Shanxi,China. Doctoral dissertation of China University of Mining and Technology,40-67] [7] Alibo D S,Nozaki Y. 1999. Rare earth elements in seawater: particle association,shale-normalization,and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. [8] Arbuzov S I,Spears D A,Vergunov A V,Ilenok S S,Mezhibor A M,Ivanov V P,Zarubina N A. 2019. Geochemistry,mineralogy and genesis of rare metal(Nb-Ta-Zr-Hf-Y-REE-Ga)coals of the seam XI in the south of Kuznetsk Basin,Russia. Ore Geology Reviews, 113: 103073. [9] Arthur M A,Sageman B B. 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. [10] Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3-4): 219-230. [11] Calder J H,Gibling M R,Mukhopadhyay P K. 1991. Peat formation in a westphalian B piedmont setting,Cumberland Basin,Nova Scotia: implications for the maceral-based interpretation of rheotrophic and raised paleomires. Contribution series No.91-002: 283-296. [12] Chen J B,Alger T J,Zhao L S,Chen Z Q,Cao L,Zhang L,Yang L. 2015. Diagenetic uptake of rare earth elements by bioapatite,with an example from Lower Triassic conodonts of South China. Earth-Science Reviews, 149: 181-202. [13] Chou C L. 2012. Sulfur in coals: a review of geochemistry and origins. International Journal of Coal Geology, 100: 1-13. [14] Dai S F,Ren D Y,Tang Y G,Shao L Y,Li S S. 2002. Distribution,isotopic variation and origin of sulfur in coals in the Wuda coalfield,Inner Mongolia,China. International Journal of Coal Geology, 51(4): 237-250. [15] Dai S F,Li D,Chou C L,Zhao L,Zhang Y,Ren D Y,Ma Y W,Sun Y Y. 2008. Mineralogy and geochemistry of boehmite-rich coals: new insights from the Haerwusu Surface Mine,Jungar Coalfield,Inner Mongolia,China. International Journal of Coal Geology, 74(3-4): 185-202. [16] Dai S F,Zhou Y P,Zhang M Q,Wang X B,Wang J M,Song X L,Jiang Y F,Luo Y B,Song Z T,Yang Z,Ren D Y. 2010. A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata,eastern Yunnan,southwestern China: Possible economic significance and genetic implications. International Journal of Coal Geology, 83(1): 55-63. [17] Dai S F,Ren D Y,Chou C L,Finkelman R B,Seredin V V,Zhou Y P. 2012. Geochemistry of trace elements in Chinese coals: a review of abundances,genetic types,impacts on human health,and industrial utilization. International Journal of Coal Geology, 94: 3-21. [18] Dai S F,Seredin V V,Ward C R,Hower J C,Xing Y W,Zhang W G,Song W J,Wang P P. 2015. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China. Mineralium Deposita, 50(2): 159-186. [19] Dai S F,Graham I T,Ward C R. 2016. A review of anomalous rare earth elements and yttrium in coal. International Journal of Coal Geology, 159: 82-95. [20] Dai S F,Ji D P,Ward C R,French D,Hower J C,Yan X Y,Wei Q. 2018. Mississippian anthracites in Guangxi Province,southern China: petrological,mineralogical,and rare earth element evidence for high-temperature solutions. International Journal of Coal Geology, 197: 84-114. [21] Dai S F,Bechtel A,Eble C F,Flores R M,French D,Graham I T,Hood M M,Hower J C,Korasidis V A,Moore T A,Püttmann W,Wei Q,Zhao L,O'Keefe J M K. 2020. Recognition of peat depositional environments in coal: a review. International Journal of Coal Geology, 219: 103383. [22] Diessel C F K. 1986. On the correlation between coal facies and depositional environments. Proceeding 20th Symposium of Department Geology,University of New Castle,New South Wales: 19-22. [23] Gayer R A,Rose M,Dehmer J,Shao L Y. 1999. Impact of sulphur and trace element geochemistry on the utilization of a marine-influenced coal: case study from the South Wales Variscan foreland basin. International Journal of Coal Geology, 40(2-3): 151-174. [24] Hatch J R,Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA. Chemical Geology, 99(1-3): 65-82. [25] Kalkreuth W D,Marchioni D L,Calder J H,Lamberson M N,Naylor R D,Paul J. 1991. The relationship between coal petrography and depositional environments from selected coal basins in Canada. International Journal of Coal Geology, 19(1-4): 21-76. [26] Ketris M P,Yudovich Y E. 2009. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78(2): 135-148. [27] Lewan M D. 1984. Factors controlling the proportionality of vanadium to nickel in crude oils. Geochimica et Cosmochimica Acta, 48(11): 2231-2238. [28] Li H Y, Xu Y G,Huang X L,He B,Luo Z Y,Yang B. 2009. Activation of northern margin of the North China Craton in Late Paleozoic: evidence from U-Pb dating and Hf isotopes of detrital zircons from the Upper Carboniferous Taiyuan Formation in the Ningwu-Jingle basin. Chinese Science Bulletin, 54(4): 677-686. [29] Li H Y,He B,Xu Y G,Huang X L. 2010. U-Pb and Hf isotope analyses of detrital zircons from Late Paleozoic sediments: insights into interactions of the North China Craton with surrounding plates. Journal of Asian Earth Sciences, 39(5): 335-346. [30] Liu B J,Wang J Y,He H T,Mishra V,Li Y H,Wang J X,Zhao C L. 2020. Geochemistry of Carboniferous coals from the Laoyaogou mine,Ningwu coalfield,Shanxi Province,northern China: Emphasis on the enrichment of valuable elements. Fuel, 279: 118414. [31] Liu D M,Qi Y,Tang D Z,Kang X D,Huang W H. 2001. Geochemistry of sulfur and elements in coals from the Antaibao surface mine,Pingshuo,Shanxi Province,China. International Journal of Coal Geology, 46(1): 51-64. [32] Lu J,Shao L Y,Yang M F,Zhou K,Wheeley J R,Wang H,Hilton J. 2017. Depositional model for peat swamp and coal facies evolution using sedimentology,coal macerals,geochemistry and sequence stratigraphy. Journal of Earth Science, 28(6): 1163-1177. [33] Murrary R W,Buchholtz ten Brink M R,Jones D L,Gerlach D C,Russ III G P. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268-271. [34] Qi L,Hu J,Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513. [35] Qin G H,Cao D Y,Wei Y C,Wang A M,Liu J C. 2019. Mineralogy and geochemistry of the No.5-2 high-sulfur coal from the Dongpo Mine,Weibei Coalfield,Shaanxi,North China,with emphasis on anomalies of gallium and lithium. Minerals, 9(7): 402. [36] Qin G H,Cao D Y,Wei Y C,Wang A M,Liu J C. 2020. Geochemical characteristics of the Permian coals in the Junger-Hebaopian mining district,northeastern Ordos Basin,China: Key role of paleopeat-forming environments in Ga-Li-REY enrichment. Journal of Geochemical Exploration, 213: 106494. [37] Sen S. 2016. Review on coal petrographic indices and models and their applicability in paleoenvironmental interpretation. Geosciences Journal, 20(5): 719-729. [38] Seredin V V,Dai S F. 2012. Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94: 67-93. [39] Shao L Y,Jones T,Gayer R,Dai S F,Li S S,Jiang Y F,Zhang P F. 2003. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield,southern China. International Journal of Coal Geology, 55(1): 1-26. [40] Sun Y Z,Zhao C L,Zhang J Y,Yang J J,Zhang Y Z,Yan Y,Xu J,Duan D J. 2013. Concentrations of valuable elements of the coals from the Pingshuo Mining District,Ningwu Coalfield,northern China. Energy Exploration & Exploitation, 31(5): 727-744. [41] Sverjensky D A. 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70-78. [42] Taylor S R,McLennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific,312. [43] Wang W F,Qin Y,Song D Y,Sang S X,Jiang B,Zhu Y M,Fu X H. 2005. Element geochemistry and cleaning potential of the No.11 coal seam from Antaibao mining district. Science in China Series D: Earth Sciences, 48(12): 2142-2154. [44] Wang W F,Qin Y,Sang S X,Jiang B,Zhu Y M,Guo Y H. 2007. Sulfur variability and element geochemistry of the No.11 coal seam from the Antaibao mining district,China. Fuel, 86(5-6): 777-784. [45] Wilkin R T,Barnes H L,Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. [46] Yossifova M G,Eskenazy G M,Valčeva S P. 2011. Petrology,mineralogy,and geochemistry of submarine coals and petrified forest in the Sozopol Bay,Bulgaria. International Journal of Coal Geology, 87(3-4): 212-225. [47] Zhang S H,Liu C Y,Liang H,Wang J Q,Bai J K,Yang M H,Liu G H,Huang H X,Guan Y Z. 2018. Paleoenvironmental conditions,organic matter accumulation,and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin,NW China. International Journal of Coal Geology, 185: 44-60. [48] Zhao L,Dai S F,Nechaev V P,Nechaeva V P,Graham I T,French D. 2019. Enrichment origin of critical elements(Li and rare earth elements)and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,northern China. Ore Geology Reviews, 115: 103184. [49] Zheng X,Wang Z,Wang Lei,Xu Y G,Liu J J. 2017. Mineralogical and Geochemical Compositions of the Lopingian Coals and Carbonaceous Rocks in the Shugentian Coalfield,Yunnan,China: with Emphasis on Fe-Bearing Minerals in a Continental-Marine Transitional Environment. Minerals, 7(9): 170. |