[1] 常华进,储雪蕾,冯连君,黄晶,张启锐. 2009. 氧化—还原敏感微量元素对古海洋沉积环境的指示意义. 地质论评, 55(1): 91-99. [Chang H J,Chu X Q,Feng L J,Huang J,Zhang Q R. 2009. Redox sensitive trace elements as paleoenvironments proxies. Geological Review, 55(1): 91-99] [2] 陈洪德,郭彤楼,侯明才,林良彪,李智武,徐胜林,钟怡江,王约,张成弓,陈安清. 2012. 中国南方中上扬子区叠合盆地沉积充填过程与物质分布规律. 成都理工大学. [Chen H D,Guo T L,Hou M C,Lin L B,Li Z W,Xu S L,Zhong Y J,Wang Y,Zhang C G,Chen A Q. 2012. Sedimentary filling process and material distribution of superimposed basins in middle and upper Yangtze region,South China. Chengdu University of Technology] [3] 陈建平,梁狄刚,张水昌,邓春萍,赵喆,张蒂嘉. 2012. 中国古生界海相烃源岩生烃潜力评价标准与方法. 地质学报, 86(7): 1132-1142. [Chen J P,Liang D G,Zhang S C,Deng C P,Zhao Z,Zhang D J. 2012. Evaluation criterion and methods of the hydrocarbon generation potential for China's Paleozoic marine source rocks. Acta Geologica Sinica, 86(7): 1132-1142] [4] 丰国秀,陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20-25. [Feng G X,Chen S J. 1988. Relationship between bitumen reflectance and vitrinite reflectance in rocks. Natural Gas Industry, 8(3): 20-25] [5] 胡华蕊,邢凤存,侯明才,段金宝,张殿伟. 2019. 上扬子奥陶纪层序岩相古地理重建及油气勘探启示. 地球科学, 44(3): 798-809. [Hu H R,Xing F C,Hou M C,Duan J B,Zhang D W. 2019. Ordovician sequence and lithofacies palaeogeography reconstruction in upper Yangtze region and its implications for oil and gas exploration. Earth Science, 44(3): 798-809] [6] 黄福喜,陈洪德,侯明才,钟怡江,李洁. 2011. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式. 岩石学报, 27(8): 2299-2317. [Huang F X,Chen H D,Hou M C,Zhong Y J,Li J. 2011. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian(Cambrian-Silurian). Acta Petrologica Sinica, 27(8): 2299-2317] [7] 黄军平,李相博,何文祥,林俊峰,徐耀辉,包洪平,王洪波,章贵松,完颜容,王雅婷. 2020. 鄂尔多斯盆地南缘下寒武统高丰度烃源岩发育特征与油气勘探方向. 海相油气地质, 25(4): 319-326. [Huang J P,Li X B,He W X,Lin J X,Xu Y H,Bao H P,Wang H B,Zhang G S,Wanyan R,Wang Y T. 2020. Development characteristics of high abundance source rocks of the lower Cambrian and direction of oil and gas exploration in southern margin of Ordos Basin. Marine Origin Petroleum Geology, 25(4): 319-326] [8] 金值民,谭秀成,唐浩,沈安江,乔占峰,郑剑锋,李飞,张世轩,陈雷,周成刚. 2020. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 476-489. [Jing Z M,Tan X C,Tang H,Shen A J,Qiao Z F,Zheng J F,Li F,Zhang S X,Chen L,Zhou C G. 2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(3): 476-489] [9] 李成凤,肖继风. 1988. 用微量元素研究胜利油田东营盆地沙河街组的古盐度. 沉积学报, 6(4): 100-107. [Li C F,Xiao J F. 1988. The application of trace element to the study on paleosalinities of Shahejie Formation in Dongying Basin of Shengli Oilfield. Acta Sedimentologica Sinica, 6(4): 100-107] [10] 李皎,何登发,梅庆华. 2015. 四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化. 石油学报, 36(4): 427-445. [Li J,He D F,Mei Q H. 2015. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas. Acta Petrolei Sinica, 36(4): 427-445] [11] 李启剑,李越,Steve Kershaw,张园园,邓小杰. 2010. 黔北凤岗硐卡拉奥陶系湄潭组中灰岩: 典型的暖水相. 微体古生物学报, 27(2): 150-158. [Li Q J,Li Y,Kershaw S,Zhang Y Y,Deng X J. 2010. “Middle member limestone”of the Ordovican Meitan Formation in Dongkala,Fenggang,northern Guizhou,SW China: typical warm marine facies. Acta Micropalaeontologica Sinica, 27(2): 150-158] [12] 刘若冰,田景春,魏志宏,张明文,钟水清,张光华,王碧. 2006. 川东南地区震旦系—志留系下组合有效烃源岩综合研究. 天然气地球科学,(6): 824-828. [Liu R B,Tian J C,Wei Z H,Zhang M W,Zhong S Q,Zhang G H,Wang B. 2006. Comprehensive research of effective hydrocarbon source rock of lower strata Sinian to Silurian system in southeast area of Sichuan Province. Natural Gas Geoscience,(6): 824-828] [13] 刘伟,洪海涛,徐安娜,姜华,石书缘. 2017. 四川盆地奥陶系岩相古地理与勘探潜力. 海相油气地质, 22(4): 1-10. [Liu W,Hong H T,Xu A N,Jiang H,Shi S Y. 2017. Lithofacies paleogeography and exploration potential of Ordovician in Sichuan Basin. Marine Origin Petroleum Geology, 22(4): 1-10] [14] 陆扬博,马义权,王雨轩,陆永潮. 2017. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. [Lu Y B,Ma Y Q,Wang Y X,Lu Y C. 2017. The sedimentary response to the major geological events and lithofacies characteristics Wufeng Formation-Longmaxi Formation in the upper Yangtze area. Earth Science, 42(7): 1169-1184] [15] 庞雄奇,李倩文,陈践发,黎茂稳,庞宏. 2014. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用. 古地理学报, 16(6): 769-789. [Pang X Q,Li Q W,Chen J F,Li M W,Pang H. 2014. Recovery method of original TOC and its application in source rocks at high mature-over mature stage in deep petroliferous basins. Journal of Palaeogeography(Chinese Edition), 16(6): 769-789] [16] 王东安,陈瑞君. 1996. 扬子地台不同时代层状硅岩的硅同位素结果的讨论. 沉积学报, 14(2): 84-90. [Wang D A,Chen R J. 1996. Discussion on silicon isotope of bedded siliceous rocks of different ages in Yangtze platform. Acta Sedimentologica Sinica,14(2): 84-90] [17] 王敏芳,黄传炎,徐志诚,程锦翔,杨赏. 2006. 综述沉积环境中古盐度的恢复. 新疆石油天然气, 2(1): 9-10. [Wang M F,Huang C Y,Xu Z C,Chen J X,Yang S. 2006. Review on paleosalinity recovery in sedimentary environment. Xinjiang Oil & Gas, 2(1): 9-10] [18] 魏巍,Thomas J A,陆永潮,刘惠民,张守鹏,张靖宇,杜远生. 2021. 古盐度指标与渤海湾盆地古近系海侵事件初探. 沉积学报, 39(3): 571-592. [Wei W,Thomas J A,Lu Y C,Liu H M,Zhang S P,Zhang J Y,Du Y S. 2021. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system,northeastern China. Acta Sedimentologica Sinica, 39(3): 571-592] [19] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: a summary. Earth and Environment, 39(3): 405-414] [20] 杨跃明,黄东,杨光,李育聪,戴鸿明,白蓉. 2019. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向. 天然气勘探与开发, 42(2): 1-12. [Yang Y M,Huang D,Yang G,Li Y C,Dai H M, Bai R. 2019. Geological conditions to form lacustrine facies shale oil and gas of Jurassic Daanzhai Member in Sichuan Basin and exploration directions. Natural Gas Exploration and Development, 42(2): 1-12] [21] 张殿伟,郝运轻,张荣强,孙炜,高平,李甘璐. 2020a. 四川盆地湄潭组生烃潜力分析及勘探意义. 沉积学报, 38(3): 635-647. [Zhang D W,Hao Y Q,Zhang R Q,Sun W,Gao P,Li G L. 2020a. Hydrocarbon potential analysis and exploration significance of the Meitan Formation,Sichuan Basin. Acta Sedimentologica Sinica, 38(3): 635-647] [22] 张殿伟,何治亮,李甘璐. 2020b. 四川盆地奥陶系油气地球化学特征及成藏模式. 天然气地球科学, 31(3): 428-435. [Zhang D W,He Z L,Li G L. 2020b. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin. Natural Gas Geoscience, 31(3): 428-435] [23] 赵建华,金之钧,林畅松,刘光祥,刘可禹,刘忠宝,张钰莹. 2019. 上扬子地区下寒武统筇竹寺组页岩沉积环境. 石油与天然气地质, 40(4): 701-715. [Zhao J H,Jin Z J,Lin C S,Liu G X,Liu K Y,Liu Z B,Zhang Y Y. 2019. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region. Oil & Gas Geology, 40(4): 701-715] [24] 周传祎. 2008. 川东南—黔中及其周边地区烃源岩品质与环境控制因素研究. 中国地质大学(北京)硕士论文. [Zhou C W. 2008. Study on the quality of source rock and factor of sedimentary environment in lower assemblage in Chuandongnan-Qianzhong and nearby area. Masteral thesis of China University of Geosciences(Beijing)] [25] 周昊,陈雷,李雪松,陈鑫,王文倩,杨莉,郭鸣黎. 2021. 川南长宁地区五峰组和龙马溪组页岩储层差异性分析. 断块油气田, 28(3): 289-294. [Zhou H,Chen L,Li X S,Chen X,Wang W Q,Yang L,Guo M L. 2021. Difference analysis of shale reservoirs of Wufeng Formation and Longmaxi Formation in Changning area,southern Sichuan. Fault-Block Oil & Gas Field, 28(3): 289-294] [26] Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa. Precambrian Research, 79: 37-55. [27] Bejugam P,Nayak G N. 2019. Tracing source-sink processes and productivity from trace metals(Ba,Zn,Pb,Cd)of the surface sediments off Mahanadi to Pennar,western Bay of Bengal. Environmental Earth Sciences, 78: 107-118. [28] Chen C,Mu C L,Zhou K K,Liang W,Ge X Y,Wang X P,Zheng B S. 2016. The geochemical characteristics and factors controlling the organic matter accumulation of the late Ordovician-Early Silurian black shale in the upper Yangtze Basin,South China. Marine and Petroleum Geology, 76: 159-175. [29] Chen L,Jiang S,Chen P,Chen X H,Zhang B M,Zhang G T,Lin W B,Lu Y C. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area,China. Marine and Petroleum Geology, 124: 667-682. [30] Chen X,Zhang Y D,Fan J X,Tang L,Sun H Q. 2010. The graptolite stratigraphy in South Jiangxi and Guangxi Movement. Science in China(Series D), 40(12): 4621-1631. [31] Hu T,Pang X Q,Jiang S,Wang Q F,Zheng X W,Ding X G,Zhao Y,Zhu C X,Li H. 2018. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: a case study of the middle Permian Lucaogou Formation in Jimusaer Sag,Junggar Basin,NW China. Fuel, 221: 196-205. [32] Jones B,Manning A C. 1994. Comparison of geochemical in dicesused for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(2): 111-129. [33] Kimura H,Watanabe Y. 2001. Oceanic anoxia at the Precambrian Cambrian boundary. Geology, 29(11): 995-998. [34] Langhorne B S,Juergen S,Ryan D W. 2019. Shallow-water onlap model for the deposition of Devonian black shales in New York,USA. Geology, 47(3): 279-283. [35] Liu Z X,Yan D T,Du X B,Li S J. 2021. Organic matter accumulation of the early Cambrian black shales on the flank of Micangshan-Hannan uplift,northern upper Yangtze Block,South China. Journal of Petroleum Science and Engineering, 200: 1-11. [36] Lucas D M,Michał R,Leszek M,Agnieszka P,Sabiela M,Michał Z,Marcelo A C,Antonio C S F,Breno L W. 2017. Benthic anoxia,intermittent photic zone euxinia and elevated productivity during deposition of the lower Permian,post-glacial fossiliferous black shales of the Paraná Basin,Brazil. Global and Planetary Change, 158: 155-172. [37] Mohammed I Q,Farouk S,Baioumy H,Lotfy N M,Hadidy A H. 2020. Mineralogical and geochemical characteristics of the Paleozoic source rocks,Akkas gas field,western desert of Iraq: implications for their origin,maturation and Ordovician-Silurian transition. Marine and Petroleum Geology, 118: 1-18. [38] Nothdurft L D,Webb G E,Kamber B S. 2004. Rare earth element geochemistry of late Devonian reefal carbonates,Canning Basin,western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim, 68: 263-283. [39] Tribovillard N,Koched H,Baudin F,Thierry A,Marion D,Romain A,Jean-Noël F. 2019. Storm-induced concentration of sulfurized,marine-origin,organic matter as a possible mechanism in the formation of petroleum source-rock. Marine and Petroleum Geology, 109: 808-818. [40] Webb G E,Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim, 64: 1557-1565. [41] Webb G E,Nothdurft L D,Kamber B S,Zhao J X. 2009. Rare earth element geochemistry of Scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [42] Wen G,Li J W,Albert H H,Alan E K,Cui B Z. 2020. Textures and compositions of clinopyroxene in a Fe skarn with implications for ore-fluid evolution and mineral-fluid REE partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. [43] Wignall P B,Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. [44] Xi Z D,Tang S H. 2021. Geochemical characteristics and organic matter accumulation of Late Ordovician shale in the Upper Yangtze Platform,South China. Energy Reports, 7: 667-682. [45] Xiao D,Cao J,Luo B,Tan X C,Li Y. 2020. On the dolomite reservoirs formed by dissolution: differential eogenetic versus hydrothermal in the lower Permian Sichuan Basin,Southwestern China. AAPG Bulletin, 104(7): 1405-1438. [46] Yan D T,Li S J,Fu H J,Jasper D M,Zhou S D,Yang X R,Zhang B,Mangi H N. 2021. Mineralogy and geochemistry of lower Silurian black shales from the Yangtze platform,South China. International Journal of Coal Geology, 237: 1-18. [47] Zeng S Q,Wang J,Fu X G,Chen W B,Feng X L,Wang D,Song C Y,Wang Z W. 2015. Geochemical characteristics,redox conditions,and organic matter accumulation of marine oil shale from the Changliang Mountain area,northern Tibet,China. Marine and Petroleum Geology, 64: 203-221. [48] Zhao M Y,Zheng Y F. 2017. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates. Earth and Planetary Science Letters, 460: 213-221. |