[1] 陈旭. 1990. 论笔石的深度分带. 古生物学报, 29(5): 507-526. [Chen X. 1990. Graptolite depth zonation. Acta Palaeontologica Sinica, 29(5): 507-526] [2] 陈旭,戎嘉余,周志毅,张元动,詹仁斌,刘建波,樊隽轩. 2001. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升. 科学通报, 46(12): 1052-1056. [Chen X,Rong J Y,Zhou Z Y,Zhang Y D,Zhan R B,Liu J B,Fan J X. 2001. The central Guizhou Uplift and Yichang rise at the Ordovician-Silurian transition in the upper Yangtze region. Chinese Science Bulletin, 46(12): 1052-1056] [3] 陈旭,张元动,樊隽轩,成俊峰,李启剑. 2010. 赣南奥陶纪笔石地层序列与广西运动. 中国科学: 地球科学, 40(12): 1621-1631. [Chen X,Zhang Y D,Fan J X,Cheng J F,Li Q J. 2010. Ordovician graptolite-bearing strata in southern Jiangxi with a special reference to the Kwangsian Orogeny. Science China: Earth Sciences, 53: 1602-1610] [4] 陈旭,张元动,樊隽轩,唐兰,孙海清. 2012. 广西运动的进程: 来自生物相和岩相带的证据. 中国科学(地球科学), 42(11): 1617-1626. [Chen X,Zhang Y D,Fan J X,Tang L,Sun H Q. 2012. Onset of the Kwangsian Orogeny as evidenced by biofacies and lithofacies. Scientia Sinica Terrae, 42(11): 1617-1626] [5] 陈旭,樊隽轩,陈清,唐兰,侯旭东. 2014. 论广西运动的阶段性. 中国科学: 地球科学, 44(5): 842-850. [Chen X,Fan J X,Chen Q,Tang L,Hou X D. 2014. Toward a stepwise Kwangsian Orogeny. Scientia Sinica Terrae, 44(5): 842-850] [6] 陈旭,樊隽轩,张元动,王红岩,陈清,王文卉,梁峰,郭伟,赵群,聂海宽,文治东,孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. [Chen X,Fan J X,Zhang Y D,Wang H Y,Chen Q,Wang W H,Liang F,Guo W,Zhao Q,Nie H K,Wen Z D,Sun Z Y. 2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4): 351-358] [7] 陈旭,樊隽轩,王文卉,王红岩,聂海宽,石学文,文治东,陈冬阳,李文杰. 2017. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式. 中国科学: 地球科学, 47(6): 720-732. [Chen X,Fan J X,Wang W H,Wang H Y,Nie H K,Shi X W,Wen Z D,Chen D Y,Li W J. 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing,Central China. Scientia Sinica Terrae, 47(6): 720-732] [8] 郭彤楼. 2016. 中国式页岩气关键地质问题与成藏富集主控因素. 石油勘探与开发, 43(3): 317-326. [Guo T L. 2016. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petroleum Exploration and Development, 43(3): 317-326] [9] 郭彤楼,张汉荣. 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. [Guo T L,Zhang H R,2014. Formation and enrichment mode of Jiaoshiba shale gas field,Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36] [10] 郭伟,李熙哲,张晓伟,兰朝利,梁萍萍,沈伟军,郑马嘉. 2022. 深水陆棚富有机质页岩沉积微相—微地貌及其对储层的控制作用: 以四川盆地南部五峰组—龙马溪组页岩为例. 石油学报, 43(8): 1089-1106. [Guo W,Li X Z,Zhang X W,Lan C L,Liang P P,Shen W J,Zheng M J. 2022. Sedimentary microfacies and microrelief of organic-rich shale in deep-water shelf and their control on reservoirs: a case study of shale from Wufeng-Longmaxi formations in southern Sichuan Basin. Acta Petrolei Sinica, 43(8): 1089-1106] [11] 何卫红,汪啸风,卜建军. 2002. 晚奥陶世五峰期扬子海盆海平面变化旋回与古水体深度. 沉积学报, 20(3): 367-375. [He W H,Wang X F,Bu J J. 2002. The eustatic cycles and the depth of water mass of the latest Ordovician Wufengian in the Yangtze Basin. Acta Sedimentologica Sinica, 20(3): 367-375] [12] 何卫红,汪啸风,卜建军. 2003. 扬子海盆中部晚奥陶世五峰期海平面变化. 地球学报, 24(1): 55-60. [He W H,Wang X F,Bu J J. 2003. Sea-level change of the central Yangtse Sea Basin in the Late Ordovician Wufengian Period. Acta Geoscientia Sinica, 24(1): 55-60] [13] 何治亮,聂海宽,张钰莹. 2016. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析. 地学前缘, 23(2): 8-17. [He Z L,Nie H K,Zhang Y Y. 2016. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas. Earth Science Frontiers, 23(2): 8-17] [14] 金值民,谭秀成,唐浩,沈安江,乔占峰,郑剑锋,李飞,张世轩,陈雷,周成刚. 2020. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 476-489. [Jin Z M,Tan X C,Tang H,Shen A J,Qiao Z F,Zheng J F,Li F,Zhang S X,Chen L,Zhou C G. 2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(3): 476-489] [15] 梁峰,张琴,熊小林,崔会英,梁萍萍,马超. 2019. 四川盆地及周缘五峰组—龙马溪组富有机质页岩沉积演化模式. 沉积学报, 37(4): 847-857. [Liang F,Zhang Q,Xiong X L,Cui H Y,Liang P P,Ma C. 2019. Sedimentary evolution model of Upper Ordovician Wufeng-Lower Silurian Longmaxi organic-rich shale in the Sichuan Basin and its surrounding area. Acta Sedimentologica Sinica, 37(4): 847-857] [16] 梁狄刚,郭彤楼,边立曾,陈建平,赵喆. 2009. 中国南方海相生烃成藏研究的若干新进展(三): 南方四套区域性海相烃源岩的沉积相及发育的控制因素. 海相油气地质, 14(2): 1-19. [Liang D G,Guo T L,Bian L C,Chen J P,Zhao Z. 2009. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,Southern China(Part 3): controlling factors on the sedimentary facies and development of Paleozoic marine source rocks. Marine Origin Petroleum Geology, 14(2): 1-19] [17] 梁峰,王红岩,拜文华,郭伟,赵群,孙莎莎,张琴,武瑾,马超,雷治安. 2017. 川南地区五峰组—龙马溪组页岩笔石带对比及沉积特征. 天然气工业, 37(7): 20-26. [Liang F,Wang H Y,Bai W H,Guo W,Zhao Q,Sun S S,Zhang Q,Wu J,Ma C,Lei Z A. 2017. Graptolite correlation and sedimentary characteristics of Wufeng-Longmaxi shale in southern Sichuan Basin. Natural Gas Industry, 37(7): 20-26] [18] 马永生,陈洪德,王国力. 2009. 中国南方层序地层与古地理. 北京: 科学出版社,280-283. [Ma Y S,Chen H D,Wang G L. 2009. Sequence Stratigraphy and Paleogeography of South China. Beijing: Science Press,280-283] [19] 牟传龙,王秀平,王启宇,周恳恳,梁薇,葛祥英,陈小炜. 2016. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系. 古地理学报, 18(3): 457-472. [Mou C L,Wang X P,Wang Q Y,Zhou K K,Liang W,Ge X Y,Chen X W. 2016. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition), 18(3): 457-472] [20] 聂海宽,金之钧,马鑫,刘忠宝,林拓,杨振恒. 2017. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征. 石油学报, 38(2): 160-174. [Nie H K,Jin Z J,Ma X,Liu Z B,Lin T,Yang Z H. 2017. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas. Acta Petrolei Sinica, 38(2): 160-174] [21] 邱振,江增光,董大忠,施振生,卢斌,谈昕,周杰,雷丹凤,梁萍萍,韦恒叶. 2017. 巫溪地区五峰组—龙马溪组页岩有机质沉积模式. 中国矿业大学学报, 46(5): 1134-1143. [Qiu Z,Jiang Z G,Dong D Z,Shi Z S,Lu B,Tan X,Zhou J,Lei D F,Liang P P,Wei H Y. 2017. Organic matter enrichment model of the shale in Wufeng-Longmachi formation of Wuxi area. Journal of China University of Mining & Technology, 46(5): 1134-1143] [22] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [23] 戎嘉余,詹仁斌. 1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响. 现代地质, 13(4): 390-394. [Rong J Y,Zhan R B. 1999. Ordovician-Silurian Brachiopod fauna turnover in South China. Geoscience, 13(4): 390-394] [24] 施振生,王红岩,林长木,孙莎莎,金惠,郝翠果,陈胜,张蓉. 2020. 威远—自贡地区五峰期—龙马溪期古地形及其对页岩储层品质的控制. 地层学杂志, 44(2): 163-173. [Shi Z S,Wang H Y,Lin C M,Sun S S,Jin H,Hao C G,Chen S,Zhang R. 2020. Paleotopography of Weiyuan-Zigong area in Wufengian-Lungmachian stages(Ordovician-Silurian transition)and its effect on the quality of shale gas reservoir. Journal of Stratigraphy, 44(2): 163-173] [25] 孙莎莎,芮昀,董大忠,施振生,拜文华,马超,张磊夫,武瑾,昌燕. 2018. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式. 石油与天然气地质, 39(6): 1087-1106. [Sun S S,Rui Y,Dong D Z,Shi Z S,Bai W H,Ma C,Zhang L F,Wu J,Chang Y. 2018. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale. Oil & Gas Geology, 39(6): 1087-1106] [26] 王社教,王兰生,黄金亮,李新景,李登华. 2009. 上扬子区志留系页岩气成藏条件. 天然气工业, 29(5): 45-50. [Wang L S,Huang J L,Li X J,Li D H. 2009. Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region. Natural Gas Industry, 29(5): 45-50] [27] 王同,张克银,熊亮,史洪亮,董晓霞,魏力民,温真桃,欧阳嘉穗,李斌,王浩宇. 2018. 四川自贡地区五峰组—龙马溪组下段古地貌刻画及其油气意义. 石油实验地质, 40(6): 764-770. [Wang T,Zhang K Y,Xiong L,Shi H L,Dong X X,Wei L M,Wen Z T,Ouyang J S,Li B,Wang H Y. 2018. Paleogeomorphology restoration of Wufeng Formation-Lower Member of Longmaxi Formation in Zigong area of Sichuan Province and its oil and gas significance. Petroleum Geology & Experiment, 40(6): 764-770] [28] 王玉满,董大忠,李新景,黄金亮,王淑芳,吴伟. 2015. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征. 天然气工业, 35(3): 12-21. [Wang Y M,Dong D Z,Li X J,Huang J L,Wang S F,Wu W. 2015. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas. Natural Gas Industry, 35(3): 12-21] [29] 王玉满,李新景,董大忠,张晨晨,王淑芳. 2017. 上扬子地区五峰组—龙马溪组优质页岩沉积主控因素. 天然气工业, 37(4): 9-20. [Wang Y M,Li X J,Dong D Z,Zhang C C,Wang S F. 2017. Main factors controlling the sedimentation of high-quality shale in Wufeng-Longmaxi Fm,Upper Yangtze region. Natural Gas Industry, 37(4): 9-20] [30] 严德天,王清晨,陈代钊,汪建国,王卓卓. 2008. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素. 地质学报, 82(3): 321-327. [Yan D T,Wang Q C,Chen D Z,Wang J G,Wang Z Z. 2008. Sedimentary environment and development controls of the hydrocarbon sources beds: the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze area. Acta Geologica Sinica, 82(3): 321-327] [31] 严德天,陈代钊,王清晨,汪建国. 2009. 扬子地区奥陶系—志留系界线附近地球化学研究. 中国科学(D辑: 地球科学), 39(3): 285-299. [Yan D T,Chen D Z,Wang Q C,Wang J G. 2009. Geochemical studies near the Ordovician-Silurian boundary in the Yangtze Region. Science in China(Series D), 39(3): 285-299] [32] 张海全,许效松,余谦,阎剑飞,周恳恳,门玉澎. 2010. 扬子板块西北缘晚奥陶—早志留世岩相古地理演化与烃源岩的关系. 石油天然气学报, 32(2): 43-47. [Zhang H Q,Xu X S,Yu Q,Yan J F,Zhou K K,Men Y P. 2010. Relationship between lithofacies paleogeographic evolution and source rocks of the Late Ordovician-Early Silurian in northwestern Yangtze Plate. Journal of Oil and Gas Technology, 32(2): 43-47] [33] 张海全,许效松,刘伟,门玉澎. 2013. 中上扬子地区晚奥陶世—早志留世岩相古地理演化与黑色页岩的关系. 沉积与特提斯地质, 33(2): 17-24. [Zhang H Q,Xu X S,Liu W,Men Y P. 2013. Late Ordovician-Early Silurian sedimentary facies and palaeogeographic evolution and its bearings on the black shales in the Middle-Upper Yangtze area. Sedimentary Geology and Tethyan Geology, 33(2): 17-24] [34] 赵明胜,王约. 2018. 上扬子海南缘晚奥陶世赫南特期沉积相特征及海平面变化. 地球学报, 39(2): 189-200. [Zhao M S,Wang Y. 2018. Sedimentary facies features and sea-level fluctuation during the Upper Ordovician Hirnantian Period on the southern margin of the Upper Yangtze Sea. Acta Geoscientica Sinica, 39(2): 189-200] [35] 周恳恳,牟传龙,许效松,葛祥英,梁薇. 2014. 华南中上扬子早志留世古地理与生储盖层分布. 石油勘探与开发, 41(5): 623-632. [Zhou K K,Mou C L,Xu X S,Ge X Y,Liang W. 2014. Early Silurian paleogeography and source-reservoir-cap rocks of the Middle-Upper Yangtze region in South China. Petroleum Exploration and Development, 41(5): 623-632] [36] 周名魁,王汝植,李志明,袁鄂荣,何原相,杨家骤,胡昌铭,熊代全,楼雄英. 1993. 中国南方奥陶—志留纪岩相古地理与成矿作用. 北京: 地质出版社. [Zhou M K,Wang R Z,Li Z M,Yuan E R,He Y X,Yang J Z,Hu C M,Xiong D Q,Lou X Y. 1993. Ordovician and Silurian Lithofacies Paleogeography and Mineralization in South China. Beijing: Geological Publishing House] [37] 邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. [Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z. 2015. Shale gas in China: characteristics,challenges and prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701] [38] 邹才能,杨智,张国生,陶士振,朱如凯,袁选俊,侯连华,董大忠,郭秋麟,宋岩,冉启全,吴松涛,白斌,王岚,王志平,杨正明,才博. 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-19,21-23. [Zou C N,Yang Z,Zhang G S,Tao S Z,Zhu R K,Yuan X J,Hou L H,Dong D Z,Guo Q L,Song Y, Ran Q Q, Wu S T, Bai B, Wang L, Wang Z P, Yang Z M, Cai B. 2019. Establishment and practice of unconventional oil and gas geology. Acta Geologica Sinica, 93(1): 12-19,21-23] [39] 邹才能,赵群,丛连铸,王红岩,施振生,武瑾,潘松圻. 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. [Zou C N,Zhao Q,Cong L Z,Wang H Y,Shi Z S,Wu J,Pan S Q. 2021. Development progress,potential and prospect of shale gas in China. Natural Gas Industry, 41(1): 1-14] [40] 邹才能,赵群,王红岩,熊伟,董大忠,于荣泽. 2022. 中国海相页岩气主要特征及勘探开发主体理论与技术. 天然气工业, 42(8): 1-13. [Zou C N,Zhao Q,Wang H Y,Xiong W,Dong D Z,Yu R Z. 2022. The main characteristics of marine shale gas and the theory & technology of exploration and development in China. Natural Gas Industry, 42(8): 1-13] [41] Alkhafaji M W,Aljubouri Z A,Aldobouni I A. 2015. Depositional environment of the Lower Silurian Akkas hot shales in the western desert of Iraq: results from an organic geochemical study. Marine and Petroleum Geology, 64: 294-303. [42] Birgenheier L P,Horton B,McCauley A D,Johnson C L,Kennedy A,Fielding C. 2017. A depositional model for offshore deposits of the lower Blue Gate Member,Mancos Shale,Uinta Basin,Utah,USA. Sedimentology, 64(5): 1402-1438. [43] Conant L C,Swanson V E. 1961. Chattanooga shale and related rocks of central Tennessee and nearby areas. U.S. Geological Survey Professional Paper, 357: 91. [44] Crusius J,Calvert S,Pedersen T,Sage D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic,suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145: 65-78. [45] Feng Z Q,Hao F,Tian J Q,Zhou S W,Dong D Z,Huang S P. 2022. Shale gas geochemistry in the Sichuan Basin,China. Earth-Science Reviews, 232: 104141. [46] Grabau A W,O'Connell M. 1917. Were the graptolite shales,as a rule,deep or shallow water deposits? Geological Society of America Bulletin, 28: 959-964. [47] Gustafson L B,Williams N. 1981. Sediment-hosted stratiform deposits of copper,lead,and zinc. Economic Geology, 9: 139-178. [48] Hambrey M J. 1985. The Late Ordovician-Early Silurian glacial period. Palaeogeography,Palaeoclimatology,Palaeoecology, 51(1-4): 273-289. [49] Han Y Y,Ran B,Liu S G,Li Z W,Ye Y H,Sun W,Yang D,Wang S Y. 2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block,South China. Marine and Petroleum Geology, 127: 104959. [50] Ilgen A G,Heath J E,Akkutlu I Y,Bryndzia L T,Cole D R,Kharaka Y K,Kneafsey T J,Milliken K L,Pyrak-Nolte L J,Suarez-Rivera R. 2017. Shales at all scales: exploring coupled processes in mudrocks. Earth-Science Reviews, 166: 132-152. [51] Jacobs L,Emerson S,Skei J. 1985. Partitioning and transport of metals across the O2H2S interface in a permanently anoxic basin: Framvaren Fjord,Norway. Geochimica et Cosmochimica Acta, 49(6): 1433-1444. [52] Jacobs L,Emerson S,Huested S S. 1987. Trace metal geochemistry in the Cariaco Trench. Deep-sea Research, 34(5-6): 965-981. [53] Johnson M E,Kaljo D L,Rong J Y. 1991. Silurian eustasy. Special papers in Palaeontology, 44: 145-163. [54] Lazar O R,Bohacs K M,Macquaker J H,Schieber J,Demko T M. 2015. Capturing key attributes of fine-grained sedimentary rocks in outcrops,cores,and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85(3): 230-246. [55] Leggett J K,McKerrow W S,Cocks L R M,Rickards R B. 1981. Periodicity in the Early Paleozoic marine realm. Journal of Geological Society, 138(2): 167-176. [56] Long D G F. 2007. Tempestite frequency curves: a key to Late Ordovician and Early Silurian subsidence,sea-level change,and orbital forcing in the Anticosti foreland basin,Quebec,Canada. Canadian Journal of Earth Sciences, 44(3): 413-431. [57] Loydell D K. 1998. Early Silurian sea-level changes. Geological Magazine, 135(4): 447-471. [58] Loydell D K,Butcher A,Frýda J. 2013. The middle Rhuddanian(Lower Silurian)‘hot' shale of North Africa and Arabia: an atypical hydrocarbon source rock. Palaeogeography,Palaeoclimatology,Palaeoecology, 386: 233-256. [59] Lüning S,Craig J,Loydell D K,Štorch P,Fitches B. 2000. Lower Silurian‘hot shales' in North Africa and Arabia: regional distribution and depositional model. Earth-Science Reviews, 49(1): 121-200. [60] McCollum L B. 1988. A shallow epeiric sea interpretation for an offshore Middle Devonian black shale facies in eastern North America. In: McMillan N J et al.(eds). Devonian of the World: proceedings of the 2nd International Symposium on the Devonian System. Canadian Society of Petroleum Geologists Memoir, 14(2): 347-355. [61] Munnecke A,Calner M,Harper D A T,Servais T. 2010. Ordovician and Silurian sea-water chemistry,sea level,and climate: a synopsis. Palaeogeography,Palaeoclimatology,Palaeoecology, 296(3-4): 389-413. [62] Rong J Y,Zhan R B,Xu H G,Huang B,Yu G H. 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian transition: emerging evidence and possible dynamics. Science China: Earth Sciences, 53(1): 1-17. [63] Ross C A, Ross J R P. 1996. Silurian sea-level fluctuations. In: Witzke B J,Ludvigson G A,Day J(eds). Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America,187-192. [64] Schieber J. 1998. Sedimentary features indicating erosion,condensation,and hiatuses in the Chattanooga Shale of central Tennessee: relevance for sedimentary and stratigraphic evolution. In: Schieber J et al.(eds). Shales and Mudstones,Volume 1: Basin Studies,Sedimentology,and Paleontology. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung,187-215. [65] Schieber J,Southard J,Thaisen K. 2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318(5857): 1760-1763. [66] Sheehan P M. 1973. The relation of Late Ordovician glaciation to the Ordovician-Silurian changeover in North American brachiopod faunas. Lethaia, 6(2): 147-154. [67] Sen S,Kozlu H. 2020. Impact of maturity on producible shale oil volumes in the Silurian(Llandovery)hot shales of the northern Arabian plate,southeastern Turkey. AAPG Bulletin, 104(3): 507-524. [68] Smith L B,Schieber J,Wilson R D. 2019. Shallow-water onlap model for the deposition of Devonian black shales in New York,USA. Geology, 47(3): 279-283. [69] Vine J D,Tourtelot E B. 1970. Geochemistry of black shale deposits: a summary report. Economic Geology, 65(3): 253-272. [70] Wilson R D,Schieber J. 2015. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York,U.S.A. Journal of Sedimentary Research, 85(11): 1393-1415. [71] Yan D T,Chen D Z,Wang Q C,Wang J G,Wang Z Z. 2009. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 274(1-2): 32-39. |