[1] 陈旭,樊隽轩,张元动,王红岩,陈清,王文卉,梁峰,郭伟,赵群,聂海宽,文治东,孙宗元. 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. [Chen X,Fan J X,Zhang Y D,Wang H Y,Chen Q,Wang W H,Liang F,Guo W,Zhao Q,Nie H K,Wen Z D,Sun Z Y.2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358] [2] 董大忠,施振生,孙莎莎,郭长敏,张晨晨,郭雯,管全中,张梦琪,蒋珊,张磊夫,马超,武瑾,李宁,昌燕. 2018. 黑色页岩微裂缝发育控制因素:以长宁双河剖面五峰组—龙马溪组为例. 石油勘探与开发,45(5),763-774. [Dong D Z,Shi Z S,Sun S S,Guo C M,Zhang C C,Guo W,Guan Q Z,Zhang M Q,Jiang S,Zhang L F,Ma C, Wu J, Li N, Chang Y.2018. Factors controlling microfractures in black shale: a case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile,Changning area,Sichuan Basin,SW China. Petroleum Exploration and Development, 45(5): 818-829] [3] 卢龙飞,秦建中,申宝剑,腾格尔,刘伟新,张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226-236. [Lu L F,Qin J Z,Shen B J,Tenger,Liu W X,Zhang Q Z.2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226-236] [4] 施振生,邱振,董大忠,卢斌,梁萍萍,张梦琪. 2018. 四川盆地巫溪2井龙马溪组含气页岩细粒沉积纹层特征石油勘探与开发, 45(2): 339-348. [Shi Z S,Qiu Z,Dong D Z,Lu B,Liang P P,Zhang M Q.2018. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin,SW China. Petroleum Exploration and Development, 45(2): 339-348] [5] 施振生,董大忠,王红岩,孙莎莎,武瑾. 2020含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例. 石油勘探与开发, 47(4): 829-840. [Shi Z S,Dong D Z,Wang H Y,Sun S S,Wu J.2020. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: a case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan,Basin,SW China. Petroleum Exploration and Development, 47(4): 829-840] [6] 施振生,赵圣贤,赵群,孙莎莎,周天琪,程峰,施少军,武瑾. 2022. 川南地区下古生界五峰组—龙马溪组含气页岩岩心裂缝特征及其页岩气意义. 石油与天然气地质, 43(5): 1087-1101. [Shi Z S,Zhao S X,Zhao Q,Sun S S,Zhou T Q,Cheng F,Shi S J,Wu J.2022. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration. Oil & Gas Geology, 43(5): 1087-1101] [7] 赵建华,金之钧,金振奎,温馨,耿一凯,颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 377-386. [Zhao J H,Jin Z J,Jin Z K,Wen X,Geng Y K,Yan C N.2016. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386] [8] Arthur M A,Sageman B B.1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. [9] Betzer P R,Byrne R H,Acker J G,Lewis C S,Jolley R R,Feely R A.1984. The oceanic carbonate system: a reassessment of biogenic controls. Science, 226(4678): 1074-1077. [10] Blumenberg M,Wiese F.2012. Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2(Wunstorf,Germany). Biogeosciences, 9(10): 4139-4153. [11] Bond D P,Grasby S E.2020. Late Ordovician mass extinction caused by volcanism,warming,and anoxia,not cooling and glaciation. Geology, 48(8): 777-781. [12] Brett C E.1983. Sedimentology,facies and depositional environments of the Rochester Shale(Silurian,Wenlockian)in western New York and Ontario. Journal of Sedimentary Research, 53(3): 947-971. [13] Calvert S E.1987. Oceanographic controls on the accumulation of organic matter in marine sediments. Geological Society,London,Special Publications, 26(1): 137-151. [14] Chen L,Jiang S,Chen P,Chen X,Zhang B,Zhang G,Lin W,Lu Y.2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area,China. Marine and Petroleum Geology, 124: 104809. [15] Chen X,Rong J Y,Li Y,Boucot A J.2004. Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition. Palaeogeography,Palaeoclimatology,Palaeoecology, 204(3-4): 353-372. [16] Demaison G J,Moore G T.1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64(8): 1179-1209. [17] Gradstein F M.2006. The geological time scale. The Paleontological Society Papers,12: 107-123. [18] Hallam A,Bradshaw M J.1979. Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. Journal of the Geological Society, 136(2): 157-164. [19] Haq B U,Schutter S R.2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. [20] Heckel P H.1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. AAPG Bulletin, 61(7): 1045-1068. [21] Hu Y,Sun W,Ding X,Wang F,Ling M,Liu J.2009. Volcanic event at the Ordovician-Silurian boundary: the message from K-bentonite of Yangtze Block. Acta Petrologica Sinica, 25(12): 3298-3308. [22] Jenkyns H C.1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, 137: 171-188. [23] Jenkyns H C.1988. The early Toarcian(Jurassic)anoxic event,stratigraphic,sedimentary and geochemical evidence. American journal of science, 288(2): 101-151. [24] Jenkyns H C.2010. Geochemistry of oceanic anoxic events. Geochemistry,Geophysics,Geosystems, 11(3): 1-30. [25] Jr. Coveney R M,Watney W L,Maples C G.1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology, 19(2): 147-150. [26] Leonowicz P.2016. Nearshore transgressive black shale from the Middle Jurassic shallow-marine succession from southern Poland. Facies, 62(2): 16. [27] Li N,Li C,Algeo T J,Cheng M,Jin C,Zhu G,Fan J,Sun Z.2021. Redox changes in the outer Yangtze Sea(South China)through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212: 103443. [28] Li Y,Schieber J,Fan T,Li Z,Zhang J.2017a. Regional depositional changes and their controls on carbon and sulfur cycling across the Ordovician-Silurian boundary,northwestern Guizhou,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 485: 816-832. [29] Li Y,Zhang T,Ellis G,Shao D.2017b. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 466: 252-264. [30] Luening S,Craig J,Loydell D K,Storch P,Fitches B.2000. Lower Silurian “hot shales” in North Africa and Arabia,regional distribution and depositional model. Earth-Science Reviews, 49(1-4): 121-200. [31] McArthur J M,Algeo T J,van de Schootbrugge B,Li Q,Howarth R J.2008. Basinal restriction,black shales,Re-Os dating,and the Early Toarcian(Jurassic)oceanic anoxic event. Paleoceanography, 23(4): 1-22. [32] McManus J,Berelson W M,Klinkhammer G P,Hammond D E,Holm C.2005. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69(1): 95-108. [33] Middelburg J J,Calvert S E,Karlin R.1991. Organic-rich transitional facies in silled basins: response to sea-level change. Geology, 19(7): 679-682. [34] Mo T,Suttle A D,Sackett W.1973. Uranium concentrations in marine sediments. Geochimica et Cosmochimica Acta, 37(1): 35-51. [35] Munnecke A,Calner M,Harper D A,Servais T.2010. Ordovician and Silurian sea-water chemistry,sea level,and climat: a synopsis. Palaeogeography,Palaeoclimatology,Palaeoecology, 296(3-4): 389-413. [36] Myers K J.1996. Organic-rich Facies and Hydrocarbon Source rocks. Sequence Stratigraphy. Oxford, UK: Blackwell Publishing Ltd.,238-257. [37] Oschmann W.1988. Kimmeridge Clay sedimentation-a new cyclic model. Palaeogeography,Palaeoclimatology,Palaeoecology, 65(3-4): 217-251. [38] Ozaki K,Tajima S,Tajika E.2011. Conditions required for oceanic anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle model. Earth and Planetary Science Letters, 304(1-2): 270-279. [39] Paris F,Verniers J,Miller M A,Al-Hajri S,Melvin J,Wellman C H.2015. Late Ordovician-earliest Silurian chitinozoans from the Qusaiba-1 core hole(North Central Saudi Arabia)and their relation to the Hirnantian glaciation. Review of Palaeobotany and Palynology, 212: 60-84. [40] Pasley M A,Gregory W A,Hart G F.1991. Organic matter variations in transgressive and regressive shales. Organic Geochemistry, 17(4): 483-509. [41] Pedersen T F,Calvert S E.1990. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?AAPG Bulletin, 74(4): 454-466. [42] Qiu Z,Zou C.2020. Controlling factors on the formation and distribution of “sweet-spot areas”of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. Journal of Asian Earth Sciences, 194: 103989. [43] Rong J,Harper D A T,Huang B,Li R,Zhang X,Chen D.2020. The latest Ordovician Hirnantian brachiopod faunas: new global insights Earth-Science Reviews, 208: 103280. [44] Röhl H J,Schmid-Röhl A.2005. Lower Toarcian(Upper Liassic)black shales of the central European epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia shale.SEPM,165-189. [45] Schroeder J O,Murray R W,Leinen M,Pflaum R C,Janecek T R.1997. Barium in equatorial Pacific carbonate sediment: terrigenous,oxide,and biogenic associations. Paleoceanography, 12(1): 125-146. [46] Shi Z,Wang H,Sun S,Guo C.2021. Graptolite zone calibrated stratigraphy and topography of the late Ordovician-early Silurian Wufeng-Lungmachi shale in Upper Yangtze area,South China. Arabian Journal of Geosciences, 14: 213. [47] Shi Z,Zhao S,Zhou T,Ding L,Sun S,Cheng F.2022a. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi shale on the Yangtze Platform,south China: Implications for provenance analysis and shale gas sweet-spot interval. Minerals, 12(10): 1190. [48] Shi Z,Zhou T,Wang H,Sun S.2022b. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Energies, 15(5): 1618. [49] Spirakis C S.1996. The roles of organic matter in the formation of uranium deposits in sedimentary rocks. Ore Geology Reviews, 11(1-3): 53-69. [50] Stephen C,Passey Q R.1993. Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bulletin, 77(3): 386-401. [51] Su W,Huff W D,Ettensohn F R,Liu X,Zhang J,Li Z.2009. K-bentonite,black-shale and flysch successions at the Ordovician-Silurian transition,South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15(1): 111-130. [52] Suess E.1980. Particulate organic carbon flux in the oceans,surface productivity and oxygen utilization. Nature, 288(5788): 260-263. [53] Słowakiewicz M,Tucker M E,Perri E,Pancost R D.2015. Nearshore euxinia in the photic zone of an ancient sea. Palaeogeography,Palaeoclimatology,Palaeoecology, 426: 242-259. [54] Wang G,Jin Z,Liu G,Liu Q,Liu Z,Wang H,Liang X,Jiang T,Wang R.2020. Geological implications of gamma ray(GR)anomalies in marine shales: a case study of the Ordovician-Silurian Wufeng-Longmaxi succession in the Sichuan Basin and its periphery,Southwest China. Journal of Asian Earth Sciences, 199: 104359. [55] Wang H,Shi Z,Zhao Q,Liu D,Sun S,Guo W,Liang F,Lin C,Wang X.2020. Stratigraphic framework of the Wufeng-Longmaxi shale in and around the Sichuan Basin,China: implications for targeting shale gas. Energy Geoscience, 1(3-4): 124-133. [56] Wignall P B.1991. Model for transgressive black shales. Geology, 19(2): 167-170. [57] Wignall P B,Newton R.2001. Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais,northern France. Sedimentary Geology, 144(3-4): 335-356. [58] Wu H.2000. Reinterpretation of the Guangxian Orogeny. Chinese Science Bulletin, 45(13): 1244-1248. [59] Wu L,Lu Y,Jiang S,Liu X,Liu Z,Lu Y.2018. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area. Marine and Petroleum Geology, 102: 74-85. [60] Yan D,Chen D,Wang Q,Wang J.2011. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block,south China. Geology, 38(7): 599-602. [61] Yan D,Wang H,Fu Q,Chen Z,He J,Gao Z.2015. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of South China: implications for organic matter accumulation. Marine and Petroleum Geology, 65: 290-301. [62] Yan D,Li S,Fu H,Jasper D M,Zhou S,Yang X,Zhang B,Mangi H N.2021. Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform,South China. International Journal of Coal Geology, 237: 103706. [63] Yang S,Hu W,Wang X,Jiang B,Yao S,Sun F,Huang Z,Zhu F.2019. Duration,evolution,and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region,South China. Earth and Planetary Science Letters, 518: 13-25. [64] Yao W,Li Z,Wuxian L,Li S,Jinhui Y.2015. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin,south China. Gondwana Research, 28(4): 1449-1465. [65] Yu J O,Reilly S Y,Wang L,Griffin W L,Zhang M,Wang R,Jiang S,Shu L.2008. Where was South China in the Rodinia supercontinent?Precambrian Research, 164(1-2): 1-15. [66] Zhang C,Santosh M,Zhu Q,Chen X,Huang W.2015a. The Gondwana connection of south China,evidence from monazite and zircon geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. [67] Zhang L,Wang R,Chen M,Liu J,Zeng L,Xiang R,Zhang Q.2015b. Biogenic silica in surface sediments of the South China Sea: controlling factors and paleoenvironmental implications. Deep Sea Research Part II Topical Studies in Oceanography, 122: 142-152. [68] Zhang T,Shen Y,Algeo T J.2010. High-resolution carbon isotopic records from the Ordovician of South China: links to climatic cooling and the Great Ordovician Biodiversification Event(GOBE). Palaeogeography,Palaeoclimatology,Palaeoecology, 289(1-4): 102-112. [69] Zhang X.2021. Marine refractory dissolved organic carbon and transgressive black shales. Chinese Science Bulletin, 67(15): 1607-1613. [70] Zhao K,Du X,Lu Y,Hao F,Liu Z,Jia J.2021. Is volcanic ash responsible for the enrichment of organic carbon in shales?Quantitative characterization of organic-rich shale at the Ordovician-Silurian transition. Bulletin, 133(3-4): 837-848. [71] Zhou L,Kang Z,Wang Z,Peng Y,Xiao H.2017. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. Journal of Petroleum Science and Engineering, 159: 376-386. [72] Zou C,Qiu Z,Poulton S W,Dong D,Wang H,Chen D,Lu B,Shi Z,Tao H.2018a. Ocean euxinia and climate change “double whammy”drove the Late Ordovician mass extinction. Geology, 46(6): 535-538. [73] Zou C,Qiu Z,Wei H,Dong D,Lu B.2018b. Euxinia caused the Late Ordovician extinction: evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 511: 1-11. |