[1] 旷红伟,彭楠,罗顺社,岑超,李家华,陈铭培. 2009. 燕山中东部凌源地区雾迷山组MT构造的发现、地质特征和研究意义. 自然科学进展, 19(12): 1308-1318. [Kuang H W,Peng N,Luo S S,Cen C,Li J H,Chen M P.2009. Discovery of MT structure and its geological features and studying significance in the eastern Yanshan in Lingyuan,Liaoning Province. Progress in Natural Science, 19(12): 1308-1318] [2] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨峰杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z,Li S,Yang F J.2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140] [3] 李怀坤,苏文博,周红英,相振群,田辉,杨立公,Warren D Huff,Frank R Ettensohn.2014. 中—新元古界标准剖面蓟县系首获高精度年龄制约: 蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xiang Z Q,Tian H,Yang L G,Huff W D,Ettensohn F R.2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic standard section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012] [4] 罗顺社,张建坤,陈小军,旷红伟. 2010. 辽西凌源地区雾迷山组沉积特征与层序地层. 中国地质, 37(2): 394-403. [Luo S S,Zhang J K,Chen X J,Kuang H W.2010. Sedimentary characteristics and sequence stratigraphy of Wumishan Formation in Lingyuan area,western Liaoning Province. Chinese Geology, 37(2): 394-403] [5] 乔秀夫. 2002. 中朝板块元古宙板内地震带与盆地格局. 地学前缘, 9(3): 141-149. [Qiao X F.2002. Intraplate seismic belt and basin framework of Sino-Korean plate in Proterozoic. Geoscience Frontiers, 9(3): 141-149] [6] 王鸿祯,楚旭春,刘本培,侯鸿飞,马丽芳. 1985. 中国古地理图集. 北京: 地图出版社. [Wang H Z,Chu X C,Liu B P,Hou H F,Ma L F. 1985. Atlas of the Palaeogeography of China. Beijing: Cartographic Publishing House] [7] Banner J L,Hanson G N.1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. [8] Banner J L,Hanson G N,Meyers W J.1988. Rare earth elements and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation(Mississippian): Implications for REE mobility during carbonate diagenesis. Journal of Sedimentary Petrology, 58: 415-432. [9] Bau M,Dulski P.1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-Formations,Transvaal Supergroup,South Africa. Precambrian Research, 79(1-2): 37-55. [10] Bau M,Moller P,Dulski P.1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry, 56(12): 123-131. [11] Berelson W,Corsetti F,Johnson B,Vo T,Der C.2009. Carbonate-associated sulfate as a proxy for lake level fluctuations: A proof of concept for Walker Lake,Nevada. Journal of Paleolimnology, 42(1): 25-36. [12] Bjerrum C J,Canfield D E.2011. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences, 108(14): 5542-5547. [13] Bottomley D J,Veizer J,Nielsen H,Moczydlowska M.1992. Isotopic composition of disseminated sulfur in Precambrian sedimentary rocks. Geochimica et Cosmochimica Acta, 56(8): 3311-3322. [14] Bottrell S H,Newton R J.2006. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Science Reviews, 75(1-4): 59-83. [15] Byrne R,Kim K.1990. Rare earth element scavenging in seawater. Geochimica et Cosmochimica Acta, 54(10): 2645-2656. [16] Byrne R,Sholkovitz E.1996. Marine chemistry and geochemistry of the lanthanides. Handbook on the Physics and Chemistry of Rare Earths, 23: 497-593. [17] Canfield D E,Teske A.1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382(6587): 127-132. [18] Canfield D E.2001. Biogeochemistry of sulfur isotopes. Stable Isotope Geochemistry, 43: 607-636. [19] Canfield D E,Zhang S,Frank A B,Wang X,Wang H,Su J,Ye Y,Frei R.2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9: 2871. DOI: 10.1038/s41467-018-05263-9. [20] Cao C,Liu X M,Batailleb C P,Liu C.2020. What do Ce anomalies in marine carbonates really mean?A perspective from leaching experiments. Chemical Geology, 532: 119-133. [21] Cole D B,Reinhard C T,Wang X,Gueguen B,Halverson G P,Gibson T,Hodgskiss M S W,McKenzie N R,Lyons T W,Planavsky N J.2016. A shalehosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44(7): 555-558. [22] Cox G M,Lyons T W,Mitchell R N,Hasterok D,Gard M.2018. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth and Planetary Science Letters, 489: 28-36. [23] de Baar H J W,German C R,Elderfield H,Wagonergaans P.1988. Rare-earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta, 52(5): 1203-1219. [24] de Baar H J W,Schijf J,Byrne R H.1991. Solution chemistry of the rare earth elements in seawater. European Journal of Solid State and Inorganic Chemistry, 28: 357-373. [25] Gilleaudeau G J,Frei R,Kaufman A J,Kah L C,Azmy K,Bartley J K,Chernyavskiy P,Knoll A H.2016. Oxygenation of the mid-Proterozoic atmosphere: Clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2: 178-187. [26] Guo H,Du Y S,Kah L C,Huang J H,Hu C Y,Huang H,Yu W C.2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group,North China: Implications for biological and oceanic evolution. Precambrian Research, 224: 169-183. [27] Guo H,Du Y,Kah L C,Hu C,Huang J H,Huang H,Yu W C,Song H Y.2015. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian group,North China: Implications for the marine sulfur cycle. Precambrian Research, 266: 319-336. [28] Hardisty D S,Lu Z,Bekker A,Diamond C W,Gill B C,Jiang G,Kah L C,Knoll A H,Loyd S J,Osburn M R,Planavsky N J,Wang C,Zhou X,Lyons T W.2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463: 159-170. [29] Holland H D.2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826. [30] Hollander D J,Huc A Y,McKenzie J A,Hsu K J.1993. Application of an eutrophic lake model to the origin of ancient organic-carbon-rich sediments. Global Biogeochemical Cycles, 7(1): 159-179. [31] Horacek M,Brandner R,Richoz S,Povoden-Karadeniz E.2010. Lower Triassic sulphur isotope curve of marine sulphates from the dolomites,N-Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 290: 65-70. [32] Hurtgen M T,Arthur M A,Suits N S,Kaufman A J.2002. The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth?Earth and Planetary Science Letters, 203(1): 413-429. [33] Knoll A H,Javaux E J,Hewitt D,Cohen P.2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences, 361(1470): 1023-1038. [34] Koehler M C,Stüeken E E,Kipp M A,Buick R,Knoll A H.2017. Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrateminimum. Geochimica et Cosmochimica Acta, 198: 315-337. [35] Kroeger K F,Funnell R H.2012. Warm Eocene climate enhanced petroleum generation from Cretaceous source rocks: A potential climate feedback mechanism?Geophysical Research Letters, 39(4): 3804-3809. [36] Kuang H W,Liu Y Q,Peng N,Lu S S,Li J H,Cen C,Chen M P.2012. Molar-tooth structure from the Mesoproterozoic Wumishan Formation in Lingyuan,Yanshan Region,North China,and geological implications. Acta Geologica Sinica, 86(1): 85-95. [37] Laakso T A,Schrag D P.2017. A theory of atmospheric oxygen. Geobiology, 15(3): 366-384. [38] Lawrence M G,Greig A,Collerson K D,Kamber B S.2006. Rare earth element and yttrium variability in South East Queensland waterways. Aquatic Geochemistry, 12(1): 39-72. [39] Li H K,Lu S N,Su W B,Xiang Z Q,Zhou H Y,Zhang Y Q.2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. [40] Ling H F,Chen X,Li D,Wang D,Shields-Zhou G A,Zhu M Y.2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China: Implications for oxygenation of coeval shallow sea-water. Precambrian Research, 225: 110-127. [41] Liu D Y,Nutman A P,Compston W,Wu J S,Shen Q H.1992. Remmants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342. [42] Liu X,Byrne R H.1998. Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-mass spectrometry. Journal of Solution Chemistry, 27(9): 803-815. [43] Luo G M,Ono S,Huang J H,Algeoa T J,Li C,Zhou L,Robinson A,Lyons T W,Xie S C.2015. Decline in oceanic sulfate levels during the Early Mesoproterozoic. Precambrian Research, 258: 36-47. [44] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315. [45] McFadden K A,Huang J,Chu X L,Jiang G Q,Kaufman A J,Zhou C M,Yuan X L,Xiao S H.2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197-3202. [46] McLennan S M.1989. Rare-earth elements in sedimentary-rocks-influence of provenance and sedimentary processes. Review in Mineralogy, 21: 169-200. [47] Mills D B,Ward L M,Jones C,Sweeten B,Forth M,Treusch A H,Canfield D E.2014. Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences of the United States of America, 111(11): 4168-4172. [48] Moffett J W.1994. The relationship between cerium and manganese oxidation in the marine environment. American Society of Limnology and Oceanography, 39: 1309-1318. [49] Nagarajan R,Madhavaraju J,Armstrong-Altrin J S,Nagendra R.2011. Geochemistry of Neoproterozoic limestones of the Shahabad Formation,Bhima Basin,Karnataka,southern India. Geosciences Journal, 15(1): 9-25. [50] Nothdurft L D,Webb G E,Kamber B S.2004. Rare earth element geochemistry of Late Devonian reefal carbonates,canning basin,western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. [51] Partin C A,Bekker A,Planavsky N J,Scott C T,Gill B C,Li C,Podkovyrov V,Maslov A,Konhauser K O,Lalonde S V,Love G D,Poulton S W,Lyons T W.2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth and Planetary Science Letters, 369-370: 284-293. [52] Planavsky N J,Bekker A,Rouxel O J,Kamber B,Hofmann A,Knudsen A,Lyons T W.2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74: 6387-6405. [53] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainhard R H,Johnson T,Fischer W W,Lyons T W.2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638. [54] Reinhard C T,Planavsky N J,Olson S L,Lyons T W,Erwin D H.2016. Earth's oxygen cycle and the evolution of animal life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. [55] Rogers J J W,Santosh M.2002. Configuration of Columbia,a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22. [56] Rothman D H,Hayes J M,Summons R E.2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124-8129. [57] Runnegar B.1991. Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Global and Planetary Change, 5(1-2): 97-111. [58] Schröder S,Bekker A,Beukes N J,Strauss H,Wagoner Niekerk H S.2008. Rise in seawater sulphate concentration associated with the Paleoproterozoic positive carbon isotope excursion: Evidence from sulphate evaporites in the~2.2-2.1 Gyr shallow-marine Lucknow Formation,South Africa. Terra Nova, 20(2): 108-117. [59] Shang M H,Tang D J,Shi X Y,Zhou L M,Zhou X Q,Song H Y,Jiang G Q.2019. A pulse of oxygen increase in the Early Mesoproterozoic ocean at ca.1.57-1.56 Ga. Earth and Planetary Science Letters,527. DOI: 10.1016/j.epsl.2019.115797. [60] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48. [61] Shields-Zhou G A,Och L M.2011. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences. GSA Today, 12(3): 4-11. [62] Sholkovitz E R,Elderfield H.1988. Cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochemical Cycles, 2(2): 157-176. [63] Sim M S,Bosak T,Ono S.2011. Large sulfur isotope fractionation does not require disproportionation. Science, 333(6038): 74-77. [64] Song B,Allen P N,Liu D Y,Wu J S.1996.3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province,northeastern China. Precambrian Research, 78(1-3): 79-94. [65] Sperling E A,Halverson G P,Knoll A H,Macdonald F A,Johnston D T.2013. A basin redox transect at the dawn of animal life. Earth and Planetary Science Letters, 371-372: 143-155. [66] Sperling E A,Rooney A D,Hays L,Sergeev V N,Vorob'eva N G,Sergeeva N D,Selby D,Johnston D T,Knoll A H.2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12(5): 373-386. [67] Sperling E A,Wolock C J,Morgan A S,Gill B C,Kunzmann M,Halverson G P,Macdonald F A,Knoll A H,Johnston D T.2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523: 451-454. [68] Strauss H.1993. The sulfur isotopic record of Precambrian sulfates-new data and a critical-evaluation of the existing record. Precambrian Research, 63(3-4): 225-246. [69] Stüeken E E.2013. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile. Geochimica et Cosmochimica Acta, 120: 121-139. [70] Su W B,Li H K,Huff W D,Ettensohn F R,Zhang S H,Zhou H Y,Wan Y S.2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation,North China. Chinese Science Bulletin, 55(29): 3312-3323. [71] Tang D J,Shi X Y,Wang X Q,Jiang G Q.2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research, 276: 145-157. [72] Tang D J,Shi X Y,Jiang G Q,Shi Q.2017. Ferruginous seawater controls the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. [73] Tostevin R,Shields G A,Tarbuck G M,He T,Wood R A.2016. Effective use of cerium anomalies as a redox proxy in carbonate dominated marine settings. Chemical Geology, 438: 146-162. [74] Tyrrell T.1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744): 525-531. [75] Wallace M W,Hood A,Shuster A,Greig A,Planavsky N J,Reed C P.2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466: 12-19. [76] Webb G E,Kamber B S.2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. [77] Webb G E,Nothdurft L D,Kamber B S,Kloprogge J T,Zhao J X.2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [78] Zhang K,Zhu X K,Yan B.2015. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chemical Geology, 412: 82-91. [79] Zhang K,Zhu X K,Wood R A,Shi Y,Gao Z F,Poulton S W.2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 5: 1731-1736. [80] Zhang S C,Wang X M,Wang H J,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E.2016. Sufficient oxygen for animal respiration 1400 million years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. [81] Zhang S C,Wang X M,Wang H J,Hammarlund E U,Su J,Wang Y,Canfield D E.2017. The oxic degradation of sedimentary organic matter 140<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml17-1671-1505-22-6-1181"><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow/></mml:msup></mml:math></inline-formula>Ma constrains atmospheric oxygen levels. Biogeosciences, 14: 2133-2149. [82] Zhao G,Sun M,Wilde S A,Li S Z.2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202. [83] Zhu S,Zhu M,Knoll A H,Yin Z,Zhao F,Sun S,Qu Y,Shi M,Liu H.2016. Decimeter-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. |