[1] 陈骏,王洪涛,鹿化煜. 1996. 陕西洛川黄土沉积物中稀土元素及其他微量元素的化学淋滤研究. 地质学报, 70(1): 61-72. [Chen J,Wang H T,Lu H Y.1996. Behaviours of REE and other trace elements during petrological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China. Acta Geologica Sinica, 70(1): 61-72] [2] 方谦,洪汉烈,赵璐璐,程峰,殷科,王朝文. 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. [Fang Q,Hong H L,Zhao L L,Cheng F,Yin K,Wang C W.2018. Climatic implication of authigenic minerals formed during pedogenic weathering processes. Earth Science, 43(3): 753-769] [3] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘,10(4): 539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G.2003. CIA(chemical index of alteration)and its applications in the Proterozoic clastic rocks. Earth Science Frontiers, 10(4): 539-544] [4] 郭望,张卫刚,李玉宏,雷迅,李永红,陈刚,张云鹏,陈磊,徐学敏. 2020. 柴北缘大煤沟组七段页岩地球化学特征: 对中侏罗世晚期物源及风化作用的指示及意义. 沉积学报, 38(3): 676-686. [Guo W,Zhang W G,Li Y H,Lei X,Li Y H,Chen G,Zhang Y P,Chen L,Xu X M.2020. Geochemistry of 7 member shale of the Dameigou Formation in the Northern Qaidam Basin,China: significance and implication for provenance and source weathering in the Late Middle Jurassic. Acta Sedimentologica Sinica, 38(3): 676-686] [5] 解晨骥,高全洲,陶贞. 2012. 流域化学风化与河流水化学研究综述与展望. 热带地理, 32(4): 331-337. [Xie C J,Gao Q Z,Tao Z.2012. Review and perspectives of the study on chemical weathering and hydrochemistry in river basin. Tropical Geography, 32(4): 331-337] [6] 靳华龙,万世明,张晋,宋泽华,赵德博,黄杰,于兆杰,李安春. 2019. 北部湾表层黏土矿物分布特征及物源研究. 海洋科学, 43(1): 75-84. [Jin H L,Wan S M,Zhang J,Song Z H,Zhao D B,Huang J,Yu Z J,Li A C.2019. Distribution and provenance of clay minerals in surface sediments of the Beibu Gulf,the South China Sea. Marine Sciences, 43(1): 75-84] [7] 李徐生,韩志勇,杨守业,陈英勇,王永波,杨达源. 2007. 镇江下蜀土剖面的化学风化强度与元素迁移特征. 地理学报, 62(11): 1174-1184. [Li X S,Han Z Y,Yang S Y,Chen Y Y,Wang Y B,Yang D Y.2007. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang. Acta Geographica Sinica, 62(11): 1174-1184] [8] 李银川,董戈,雷昉,魏海珍. 2020. 硼同位素分馏的实验理论认识和矿床地球化学研究进展. 地学前缘, 27(3): 14-28. [Li Y C,Dong G,Lei F,Wei H Z.2020. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study. Earth Science Frontiers, 27(3): 14-28] [9] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244. [Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X.2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244] [10] 刘金科,韩贵琳. 2019. 镁同位素在森林生态系统研究中的应用. 生态学杂志, 38(3): 899-907. [Liu J K,Han G L.2019. Research advances about magnesium isotope in forest ecosystems. Chinese Journal of Ecology, 38(3): 899-907] [11] 邵菁清,杨守业. 2012. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候. 科学通报, 57(11): 933-942. [Shao J Q,Yang S Y.2012. Does chemical index of alteration(CIA)reflect silicate weathering and monsoonal climate in the Changjiang River basin. Chinese Science Bulletin, 57(11): 933-942] [12] 孙明照,瞿书逸,李来峰,李乐,吴卫华. 2018. 岩性对化学风化的影响: 来自亚热带气候条件下花岗岩和安山岩的对比. 地球科学与环境学报, 40(5): 627-636. [Sun M Z,Qu S Y,Li L F,Li L,Wu W H.2018. Effects of lithology on chemical weathering: comparison of granite and andesite in subtropical climate. Journal of Earth Sciences and Environment. 40(5): 627-636] [13] 汤艳杰,贾建业,谢先德. 2002. 黏土矿物的环境意义. 地学前缘, 9(2): 337-344. [Tang Y J,Jia J Y,Xie X D.2002. Environment significance of clay minerals. Earth Science Frontiers, 9(2): 337-344] [14] 王昆,李伟强,李石磊. 2020. 钾稳定同位素研究综述. 地学前缘, 27(3): 104-122. [Wang K,Li W Q,Li S L.2020. Stable potassium isotope geochemistry and cosmochemistry. Earth Science Frontiers, 27(3): 104-122] [15] 肖军,贺茂勇,肖应凯,金章东. 2012. 硼同位素地球化学应用研究进展. 海洋地质前沿, 28(9): 20-33. [Xiao J,He M Y,Xiao Y K,Jin Z D.2012. Progress of geochemical application of boron isotope. Marine Geology Frontier, 28(9): 20-33] [16] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alterationof mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [17] 徐亚军,杜远生,杨江海. 2007. 沉积物物源分析研究进展. 地质科技情报, 26(3): 26-32. [Xu Y J,Du Y S,Yang J H.2007. Prospects of sediment provenance analysis. Geological Science and Technology Information, 26(3): 26-32] [18] 闫雅妮,张伟,张俊文,任亚雄,赵志琦. 2021. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展. 地球科学进展, 36(3): 325-334. [Yan Y N,Zhang W,Zhang J W,Ren Y X,Zhao Z Q.2021. Advances in magnesium isotope geochemistry during weathering of continental silicate rocks. Advances in Earth Science, 36(3): 325-334] [19] 杨江海,马严. 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 64-75. [Yang J H,Ma Y.2017. Paleoclimate perspectives of source-to-sink sedimentary processes. Earth Science, 42(11): 64-75] [20] 杨作升,赵晓辉,乔淑卿,李云海,范德江. 2008. 长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价. 中国海洋大学学报(自然科学版), 38(2): 244-250. [Yang Z S,Zhao X H,Qiao S Q,Li Y H,Fan D J.2008. Feldspar/Quartz(F/Q)ratios as a chemical weathering intensity indicator in different grain size-fractions of sediments from the Changjiang and Huanghe Rivers to the seas. Periodical of Ocean University of China, 38(2): 244-250] [21] 曾蒙秀,宋友桂,安芷生,常宏,李越. 2014. 青海湖二郎剑钻孔的黏土矿物学研究. 中国科学: 地球科学, 44(6): 1298-1311. [Zeng M X,Song Y G,An Z S,Chang H,Li Y.2014. Clay mineral records of the Erlangjian drill core sediments from the Lake Qinghai Basin,China. Science China: Earth Sciences, 44(6): 1298-1311] [22] 赵志琦,刘丛强,肖应凯,郎赟超. 2002. 黄土风化过程的硼同位素地球化学研究. 中国科学(D辑: 地球科学), 32(6): 507-513. [Zhao Z Q,Liu C Q,Xiao Y K,Lang Y C.2002. Study on boron isotope geochemistry of weathering process of loess. Science in China: Series D, 32(6): 507-513] [23] Alizai A,Hillier S,Clift P D,Giosan L,Hurst A,WagonerLaningham S,Macklin M.2012. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research, 77(3): 368-381. [24] Amireh B S.2020. Weathering,recycling,hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana lower Cambrian-Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228. [25] Andò S,Garzanti E,Padoan M,Limonta M.2012. Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sedimentary Geology, 280: 165-178. [26] Babechuk M G,Widdowson M,Kamber B S.2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles,Deccan Traps,India. Chemical Geology, 363: 56-75. [27] Baronas J J,West A J,Burton K W,Hammond D E,Opfergelt S,Pogge von Strandmann P A,James R H,Rouxel O J.2020. Ge and Si isotope behavior during intense tropical weathering and ecosystem cycling. Global Biogeochemical Cycles, 34(8): e2019GB006522. [28] Bayon G,Delvigne C,Ponzevera E,Borges A V,Darchambeau F,De Deckker P,Lambert T,Monin L,Toucanne S,André L.2018. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochimica et Cosmochimica Acta, 229: 147-161. [29] Berner R A.1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276(5312): 544-546. [30] Brewer A,Teng F Z,Dethier D.2018. Magnesium isotope fractionation during granite weathering. Chemical Geology, 501: 95-103. [31] Buggle B,Glaser B,Hambach U,Gerasimenko N,Marković S.2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240(1-2): 12-21. [32] Carpentier M,Weis D,Chauvel C.2013. Large U loss during weathering of upper continental crust: the sedimentary record. Chemical Geology, 340: 91-104. [33] Chamley H.1989. Estuaries and Deltas//Clay Sedimentology. Berlin,Heidelberg:Springer, 97-116. [34] Chen H,Liu X M,Wang K.2020a. Potassium isotope fractionation during chemical weathering of basalts. Earth and Planetary Science Letters, 539: 116192. [35] Chen X Y,Teng F Z,Huang K J,Algeo T J.2020b. Intensified chemical weathering during Early Triassic revealed by magnesium isotopes. Geochimica et Cosmochimica Acta, 287: 263-276. [36] Chesworth W.1973. The parent rock effect in the genesis of soil. Geoderma, 10(3): 215-225. [37] Cividini D,Lemarchand D,Chabaux F,Boutin R,Pierret M C.2010. From biological to lithological control of the B geochemical cycle in a forest watershed(Strengbach,Vosges). Geochimica et Cosmochimica Acta, 74(11): 3143-3163. [38] Clift P D,Wan S,Blusztajn J.2014. Reconstructing chemical weathering,physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86-102. [39] Colman S M.1982. Chemical weathering of basalts and andesites:evidence from weathering rinds. Washington: United States Geological Survey Paper, 1246: 55. [40] Cox R,Lowe D R,Cullers R L.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. [41] Deconinck J F,Hesselbo S P,Debuisser N,Averbuch O,Baudin F,Bessa J.2003. Environmental controls on clay mineralogy of an Early Jurassic mudrock(Blue Lias Formation,southern England). International Journal of Earth Sciences, 92(2): 255-266. [42] Dellinger M,Bouchez J,Gaillardet J,Faure L,Moureau J.2017. Tracing weathering regimes using the lithium isotope composition of detrital sediments. Geology, 45(5): 411-414. [43] Ding T P,Gao J F,Tian S H,Wang H B,Li M.2011. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River,China,with implications for the global silicon cycle. Geochimica et Cosmochimica Acta, 75(21): 6672-6689. [44] Dinis P A,Garzanti E,Hahn A,Vermeesch P,Cabral-Pinto M.2020. Weathering indices as climate proxies: a step forward based on Congo and SW African river muds. Earth-Science Reviews, 201: 103039. [45] Dixon J L,Hartshorn A S,Heimsath A M,DiBiase R A,Whipple K X.2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains,California. Earth and Planetary Science Letters, 323: 40-49. [46] Duzgoren-Aydin N S,Aydin A,Malpas J.2002. Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63(1-2): 99-119. [47] Ehrmann W.1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound(Ross Sea,Antarctica)on paleoclimate and ice dynamics. Palaeogeography,Palaeoclimatology,Palaeoecology, 139(3-4): 213-231. [48] Ercolani C,Lemarchand D,Dosseto A.2019. Insights on catchment-wide weathering regimes from boron isotopes in riverine material. Geochimica et Cosmochimica Acta, 261: 35-55. [49] Esquevin J.1969. Influence de la composition chimique des illites sur leurcristallinité. Bulletin du Centre de Recherches de Pau-S.N.P.A., 3(1): 147-153. [50] Fedo C M,Wayne Nesbitt H,Young G M.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924. [51] Gabet E J,Mudd S M.2009. A theoretical model coupling chemical weathering rates with denudation rates. The Geological Society of America, 37(2): 151-154. [52] Gaillardet J,Dupré B,Allègre C J.1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63(23-24): 4037-4051. [53] Galán E,Ferrell R E.2013. Genesis of clay minerals. In: Faïza B, Gerhard L (eds). Developments in Clay Science. Elsevier: 83-126. [54] Garzanti E,Padoan M,Andò S,Resentini A,Vezzoli G,Lustrino M.2013a. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547-580. [55] Garzanti E,Padoan M,Setti M,López-Galindo A,Villa I M.2014. Provenance versus weathering control on the composition of tropical river mud(southern Africa). Chemical Geology, 366: 61-74. [56] Garzanti E,Padoan M,Setti M,Najman Y,Peruta L,Villa I M.2013b. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochemistry,Geophysics,Geosystems, 14(2): 292-316. [57] Garzanti E,Resentini A.2016. Provenance control on chemical indices of weathering(Taiwan river sands). Sedimentary Geology, 336: 81-95. [58] Greber N D,Dauphas N.2019. The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust. Geochimica et Cosmochimica Acta, 255: 247-264. [59] Gu X X,Liu J M,Zheng M H,Tang J X,Qi L.2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China: geochemical evidence. Journal of Sedimentary Research, 72(3): 393-407. [60] Guo Y,Yang S,Su N, Li C, Yin P, Wang Z B.2018. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta, 227: 48-63. [61] Gupta A S,Rao S K.2001. Weathering indices and their applicability for crystalline rocks. Bulletin of Engineering Geology and the Environment, 60(3): 201-221. [62] Harnois L.1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55(3): 319-322. [63] Harrassowitz H L F.1926. Laterit. Berlin: Gebrüder Borntraeger. [64] Hatano N,Yoshida K,Sasao E.2019. Effects of grain size on the chemical weathering index: a case study of Neogene fluvial sediments in southwest Japan. Sedimentary Geology, 386: 1-8. [65] Hessler A M,Lowe D R.2017. Initial generation of sand across climate zones of the Mojave,Sierra Nevada,and Klamath Batholiths in California,USA. Sedimentary Geology, 348: 37-50. [66] Hessler A M,Zhang J,Covault J,Ambrose W.2017. Continental weathering coupled to Paleogene climate changes in North America. Geology, 45(10): 911-914. [67] Hossain H M Z,Kawahata H,Roser B P,Sampei Y,Manaka T,Otani S.2017. Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Geochemistry, 77(3): 443-458. [68] Hu Y,Teng F Z,Plank T,Huang K J.2017. Magnesium isotopic composition of subducting marine sediments. Chemical Geology, 466: 15-31. [69] Huang K J,Teng F Z,Shen B,Xiao S,Lang X,Ma H R,Fu Y,Peng Y.2016. Episode of intense chemical weathering during the termination of the 63<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml4-1671-1505-23-6-1192"><mml:msup><mml:mrow><mml:mn>5</mml:mn></mml:mrow><mml:mrow/></mml:msup></mml:math></inline-formula>Ma Marinoan glaciation. Proceedings of the National Academy of Sciences, 113(52): 14904-14909. [70] Huang T Y,Teng F Z,Rudnick R L,Chen X Y,Hu Y,Liu Y S,Wu F Y.2020. Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 278: 122-136. [71] Hughes H J,Sondag F,Santos R V,André L,Cardinal D.2013. The riverine silicon isotope composition of the Amazon Basin. Geochimica et Cosmochimica Acta, 121: 637-651. [72] Jayawardena U S,Izawa E.1994. A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Engineering Geology, 36(3-4): 303-310. [73] Jenny H.1941. Factors of soil formation: a system of quantitative petrology. Soil Science, 42(5): 415. [74] Jian X,Guan P,Zhang W,Feng F.2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin,northeastern Tibetan Plateau: implications for provenance and weathering. Chemical Geology, 360: 74-88. [75] Jin Z,Wang S,Shen J,Zhang E,Li F,Ji J,Lu X.2001. Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surface Processes and Landforms, 26(7): 775-782. [76] Kamp P C.2010. Arkose,subarkose,quartz sand,and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. Journal of Sedimentary Research, 80(10): 895-918. [77] Kump L R,Brantley S L,Arthur M A.2000. Chemical weathering,atmospheric CO2,and climate. Annual Review of Earth and Planetary Sciences, 28(1): 611-667. [78] Lemarchand D,Cividini D,Turpault M P,Chabaux F.2012. Boron isotopes in different grain size fractions: exploring past and present water-rock interactions from two soil profiles(Strengbach,Vosges Mountains). Geochimica et Cosmochimica Acta, 98: 78-93. [79] Li C S,Shi X F,Kao S J,Chen M T,Liu Y G,Fang X S,Lü H H,Zou J J,Liu S F,Qiao S Q.2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57(6): 673-681. [80] Li L L,Guo Z J,Guan S W,Zhou S,Wang M,Fang Y,Zhang C.2015a. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin. Science China Earth Sciences, 58(6): 859-875. [81] Li S,Gaschnig R M,Rudnick R L.2015b. Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176: 96-117. [82] Li S,Li W,Beard B L,Raymo M E,Wang X,Chen Y,Chen J.2019a. K isotopes as a tracer for continental weathering and geological K cycling. Proceedings of the National Academy of Sciences, 116(18): 8740-8745. [83] Li W,Beard B L,Li S.2016. Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry, 31:1023-1029. [84] Li W,Li S,Beard B L.2019b. Geological cycling of potassium and the K isotopic response: insights from loess and shales. Acta Geochimica, 38(4): 508-516. [85] Li W,Liu X M.2020. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: implications for chemical weathering. Geochimica et Cosmochimica Acta, 284: 156-172. [86] Liang L,Sun Y,Beets C J,Prins M A,Wu F,Wagonerdenberghe J.2013. Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau. Journal of Asian Earth Sciences, 69: 177-184. [87] Liu X M,Teng F Z,Rudnick R L,McDonough W F,Cummings M L.2014. Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et Cosmochimica Acta, 135: 336-349. [88] Liu Z,Colin C,Trentesaux A,Siani G,Frank N,Blamart D,Farid S.2005. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quaternary Research, 63(3): 316-328. [89] Liu Z,Colin C,Li X,Zhao Y,Tuo S,Chen Z,Siringan F P,Liu J T,Huang C Y,You C F,Huang K F.2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277(1-4): 48-60. [90] Louvat P,Gaillardet J,Paris G,Dessert C.2011. Boron isotope ratios of surface waters in Guadeloupe,Lesser Antilles. Applied Geochemistry, 26: S76-S79. [91] Ma L,Teng F Z,Jin L,Ke S,Yang W,Gu H O,Brantley S L.2015. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation. Chemical Geology, 397: 37-50. [92] Maher K,Chamberlain C P.2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178): 1502-1504. [93] McLennan S M.1993. Weathering and global denudation. The Journal of Geology, 101(2): 295-303. [94] McLennan S M,Hemming S R,Taylor S R,Eriksson K A.1995. Early Proterozoic crustal evolution: geochemical and NdPb isotopic evidence from meta sedimentary rocks,southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177. [95] Mei H W,Jian X,Zhang W,Fu H J,Zhang S.2021. Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: implications for chemical weathering intensity evaluation. CATENA, 203: 105368. [96] Millot R,Tremosa J,Négrel P.2019. Chemical weathering of a granitic watershed: coupling Lithium isotopes and reactive transport modeling,preliminary results//E3S Web of Conferences 98. France: EDP Sciences,WRI-16: 1-4. [97] Millot R,Vigier N,Gaillardet J.2010. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin,Canada. Geochimica et Cosmochimica Acta, 74(14): 3897-3912. [98] Miriyala P,Sukumaran N P,Nath B N,Ramamurty P B,Sijinkumar A V,Vijayagopal B,Ramaswamy V,Sebastian T.2017. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification. Scientific Reports, 7(1): 1-11. [99] Muttik N,Kirsimäe K,Newsom H E,Williams L B.2011. Boron isotope composition of secondary smectite in suevites at the Ries crater,Germany: boron fractionation in weathering and hydrothermal processes. Earth and Planetary Science Letters, 310(3-4): 244-251. [100] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717. [101] Nesbitt H W,Young G M.1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. [102] Nesbitt H W,Young G M,McLennan S M,Keays R R.1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments,with implications for provenance studies. The Journal of Geology, 104(5): 525-542. [103] Nesbitt H W,Markovics G.1997. Weathering of granodioritic crust,long-term storage of elements in weathering profiles,and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. [104] Noireaux J,Sullivan P L,Gaillardet J,Louvat P,Steinhoefel G,Brantley S L.2021. Developing boron isotopes to elucidate shale weathering in the critical zone. Chemical Geology, 559: 119900. [105] Oliva P,Viers J,Dupré B.2003. Chemical weathering in granitic environments. Chemical Geology, 202(3-4): 225-256. [106] Opfergelt S,Georg R B,Delvaux B,Cabidoche Y M,Burton K W,Halliday A N.2012. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences,Guadeloupe. Earth and Planetary Science Letters, 341: 176-185. [107] Opfergelt S,Delmelle P.2012. Silicon isotopes and continental weathering processes: assessing controls on Si transfer to the ocean. Comptes Rendus Geoscience, 344(11-12): 723-738. [108] Pang H,Pan B,Garzanti E,Gao H,Zhao X,Chen D.2018. Mineralogy and geochemistry of modern Yellow River sediments: implications for weathering and provenance. Chemical Geology, 488: 76-86. [109] Parker A.1970. An index of weathering for silicate rocks. Geological Magazine, 107(6): 501-504. [110] Perri F.2018. Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies. Geological Magazine, 155(4): 944-954. [111] Pistiner J S,Henderson G M.2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1-2): 327-339. [112] Price J R,Velbel M A.2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3-4): 397-416. [113] Reiche P.1943. Graphic representation of chemical weathering. Journal of Sedimentary Research, 13(2): 58-68. [114] Riebe C S,Kirchner J W,Finkel R C.2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224(3-4): 547-562. [115] Riebe C S,Hahm W J,Brantley S L.2017. Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. [116] Rieu R,Allen P A,Plooötze M,Pettke T.2007a. Climatic cycles during a Neoproterozoic “snowball”glacial epoch. Geology, 35(4): 299-302. [117] Rieu R,Allen P A,Plotze M,Pettke T.2007b. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession,Mirbat area,south Oman: implications for paleoweathering conditions. Precambrian Research, 154(3-4): 248-265. [118] Rocha-Filho P,Antunes F S,Falcao M F G.1985. Quantitative influence of the weathering degree upon the mechanical properties of a young gneiss residual soil. Proceedinfs of the 1st International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils. Brasilia. Publ. 1: 281-294. [119] Romer R L,Meixner A,Hahne K.2014. Lithium and boron isotopic composition of sedimentary rocks—The role of source history and depositional environment: a 250Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Research, 26(3-4): 1093-1110. [120] Roy D K,Roser B P.2013. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir basin,Bangladesh. Gondwana Research, 23(3): 1163-1171. [121] Rudnick R L,Gao S.2014. Composition of the continental crust. In: Holland H D,Turekian K K(eds). Treatise on Geochemistry(Second Edition). Oxford: Elsevier,1-51. [122] Ruxton B P.1968. Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76(5): 518-527. [123] Santiago Ramos D P,Morgan L E,Lloyd N S,Higgins J A.2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: insights from the K isotopic composition(41K/39K)of deep-sea pore-fluids. Geochimica et Cosmochimica Acta, 236: 99-120. [124] Shao J Q,Yang S Y.2012. Does chemical index of alteration(CIA)reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chinese Science Bulletin, 57(10): 1178-1187. [125] Song Y,Wang Q,An Z,Qiang X,Dong J,Chang H,Zhang M,Guo X.2018. Mid-Miocene climatic optimum: clay mineral evidence from the red clay succession,Longzhong Basin,Northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 512: 46-55. [126] Su N,Yang S,Guo Y,Yue W,Wang X,Yin P,Huang X.2017. Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochemistry,Geophysics,Geosystems, 18(3): 935-955. [127] Tanaka K,Watanabe N.2015. Size distribution of alkali elements in riverbed sediment and its relevance to fractionation of alkali elements during chemical weathering. Chemical Geology, 411: 12-18. [128] Teng F Z,Hu Y,Ma J L,Wei G J,Rudnick R L.2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochimica et Cosmochimica Acta, 278: 261-271. [129] Velbel M A.2007. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. Developments in Sedimentology, 58: 113-150. [130] Velbel M A,Losiak A I.2010. Denticles on chain silicate grain surfaces and their utility as indicators of weathering conditions on Earth and Mars. Journal of Sedimentary Research, 80(9): 771-780. [131] Vogel D E.1975. Precambrian weathering in acid metavolcanic rocks from the Superior Province,Villebon Township,South-central Quebec. Canadian Journal of Earth Sciences, 12(12): 2080-2085. [132] Vogt T.1927. Sulitjelma feltets geologi og petrografi. Norges Geologiske Undersokelse, 121: 1-560(in Norwegian,with English abstract). [133] Wang Q,Yang S.2013. Clay mineralogy indicates the Holocene monsoon climate in the Changjiang(Yangtze River)Catchment,China. Applied Clay Science, 74: 28-36. [134] Wei G,Li X H,Liu Y,Shao L,Liang X.2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21(4): 1-11. [135] Wei H Z,Lei F,Jiang S Y,Lu H Y,Xiao Y K,Zhang H Z,Sun X F.2015. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China. Quaternary Research, 83(1): 243-255. [136] Weynell M,Wiechert U,Schuessler J A.2017. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona,northeastern Tibetan Plateau. Geochimica et Cosmochimica Acta, 213: 155-177. [137] Weynell M,Wiechert U,Schuessler J A.2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochimica et Cosmochimica Acta, 293: 205-223. [138] White A F,Buss H L.2014.7. 4-Natural weathering rates of silicate minerals(Second Edition). Treatise on Geochemistry, 7(4): 115-155. [139] Williams L B,Hervig R L,Wieser M E,Hutcheon Ⅰ.2001. The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin,USA. Chemical Geology, 174(4): 445-461. [140] Wimpenny J,Yin Q Z,Tollstrup D,Xie L W,Sun J.2014. Using Mg isotope ratios to trace Cenozoic weathering changes: a case study from the Chinese Loess Plateau. Chemical Geology, 376: 31-43. [141] Xiong S,Ding Z,Zhu Y,Zhou R,Lu H.2010. A~6 Ma chemical weathering history,the grain size dependence of chemical weathering intensity,and its implications for provenance change of the Chinese loess-red clay deposit. Quaternary Science Reviews, 29(15-16): 1911-1922. [142] Yan Y,Xia B,Lin G,Cui X,Hu X,Yan P,Zhang F.2007. Geochemistry of the sedimentary rocks from the Nanxiong Basin,South China and implications for provenance,paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197(1-2): 127-140. [143] Yue W,Yue X,Panwar S,Zhang L,Jin B.2019. The chemical composition and surface texture of transparent heavy minerals from Core LQ24 in the Changjiang Delta. Minerals, 9(7): 454. [144] Zakharova E A,Pokrovsky O S,Dupré B,Gaillardet J,Efimova L E.2007. Chemical weathering of silicate rocks in Karelia region and Kola peninsula,NW Russia: assessing the effect of rock composition,wetlands and vegetation. Chemical Geology, 242(1-2): 255-277. [145] Zeng H,Rozsa V,Nie N X,Zhang Z,Pham T A,Galli G,Dauphas N.2019. Ab Initio calculation of equilibrium isotopic fractionations of potassium and rubidium in minerals and water. ACS Earth and Space Chemistry, 3(11): 2601-2612. [146] Zhang J W,Zhao Z Q,Li X D,Yan Y N,Lang Y C,Ding H,Cui L F,Meng J L,Liu C Q.2021. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou,southern China. Applied Geochemistry, 125: 104825. |