[1] |
何龙, 王云鹏, 陈多福, 王钦贤, 王成. 2019. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系. 天然气地球科学, 30(2): 203-218.
|
|
[He L, Wang Y P, Chen D F, Wang Q X, Wang C. 2019. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formation in Nanchuan area,Chongqing. Natural Gas Geoscience, 30(2): 203-218]
|
[2] |
何龙. 2020. 四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文.
|
|
[He L. 2020. Organic Matter Enrichment and Evolution of Sedimentary Environment of the Wufeng-Longmaxi Shale in Southeastern Margins of the Sichuan Basin. Doctoral dissertation of Guangzhou Institute of Geochemistry,Chinese Academy of Sciences]
|
[3] |
贾承造, 李本亮, 张兴阳, 李传新. 2007. 中国海相盆地的形成与演化. 科学通报, 52(S1): 1-8.
|
|
[Jia C Z, Li B X, Zhang X Y, Li C X. 2007. Formation and evolution of marine basins in China. Chinese Science Bulletin, 52(S1): 1-8]
|
[4] |
梁超, 姜在兴, 杨镱婷, 魏小洁. 2012. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698.
|
|
[Liang C, Jiang Z X, Yang Y T, Wei X J. 2012. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation,Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698]
|
[5] |
梁超, 吴靖, 姜在兴, 操应长, 刘淑君, 逄淑伊. 2017. 有机质在页岩沉积成岩过程及储层形成中的作用. 中国石油大学学报(自然科学版), 41(6): 1-8.
|
|
[Liang C, Wu J, Jiang Z X, Liu S J, Pang S Y. 2017. Significances of organic matters on shale deposition,diagenesis process and reservoir formation. Journal of China University of Petroleum, 41(6): 1-8]
|
[6] |
陆扬博. 2020. 上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复. 中国地质大学博士学位论文.
|
|
[Lu Y B. 2020. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic rich shales. Doctoral dissertation of China University of Geosciences]
|
[7] |
毛小平, 陈修蓉, 李振, 李书现, 李岁岁, 朱启轩. 2024a. 浅议四川盆地五峰组—龙马溪组页岩沉积模式与有机质富集规律. 沉积学报, 43(2): 701-733.
|
|
[Mao X P, Chen X R, Li Z, Li S X, Li S S, Zhu Q X. 2024a. Shale sedimentary patterns and organic matter enrichment patterns of the Wufeng-Longmaxi Formation in the Sichuan Basin. Acta Sedimentologica Sinica, 43(2): 701-733]
|
[8] |
毛小平, 陈修蓉, 王志京, 杨岳兴, 李书现, 杨帆. 2024b. 黑色页岩有机质富集程度与古气候的关系: 以中上扬子五峰—龙马溪组页岩为例. 地质科学, 59(5): 1151-1172.
|
|
[Mao X P, Chen X R, Wang Z J, Yang Y X, Li S X, Yang F. 2024b. Relationship between organic matter enrichment degree of black shale and paleoclimate: taking the shale of the Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region as an example. Chinese Journal of Geology, 59(5): 1151-1172]
|
[9] |
邱振, 王清晨. 2012. 来宾地区中晚二叠世之交烃源岩沉积的主控因素及大地构造背景. 地质科学, 47(4): 1085-1098.
|
|
[Qiu Z, Wang Q C. 2012. Main controlling factors and tectonic background of source rock deposition at the middle-late Permian boundary in the Laibin area. Chinese Journal of Geology, 47(4): 1085-1098]
|
[10] |
王彤, 朱筱敏, 董艳蕾, 陈贺贺, 苏彬, 刘宇, 伍炜. 2020. 基于微量元素分析的古沉积背景重建: 以准噶尔盆地西北缘古近系安集海河组为例. 地质学报, 94(12): 3830-3851.
|
|
[Wang T, Zhu X M, Dong Y L, Chen H H, Su B, Liu Y, Wu W. 2020. Tarce elements as paleo sedimentary environment indicators: a case study of the Paleogene Anjihaihe Formation in the northwestern Junggar Basin. Acta Geologica Sinica, 94(12): 3830-3851]
|
[11] |
Algeo T J, Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3-4): 289-318.
|
[12] |
Boyer C, Kieschnick J, Suarez-Rivera R, Lewis R, Waters G. 2006. Producing gas from its source. Oilfield Review,18: 36-49.
|
[13] |
Cai Q S, Hu M Y, Kane O I, Li M T, Zhang B M, Hu Z G, Deng Q J, Xing N. 2022. Cyclic variations in paleoenvironment and organic matter accumulation of the Upper Ordovician-Lower Silurian black shale in the Middle Yangtze region, South China: implications for tectonic setting,paleoclimate,and sea-level change. Marine and Petroleum Geology,136: 105447.
|
[14] |
Crusius J, Calvert S, Pedersen T, Sage D. 1996. Rhenium and molybdenum enrichments in sediments as indicators of oxic,suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1-4): 65-78.
|
[15] |
Curtis J. 2002. Fractured shale-gas systems. AAPG Bulletin, 86(11): 1921-1938.
|
[16] |
Li D L, Zhu Z W, Wu X L, Liu F T, Zhao B S, Cheng J H, Wang B P. 2018. Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustrine Zhangjiatan oil shale,southern Ordos Basin,China. Acta Geochimica, 37(1): 134-150.
|
[17] |
Li Y F, Zhang T W, Ellis G S, Shao D Y. 2017. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform,South China. Palaeogeography, Palaeoclimatology, Palaeoecology,466: 252-264.
|
[18] |
Liang C, Jiang Z X, Zhang C M, Guo L, Yang Y T, Li J. 2014. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale,Sichuan Basin,South China. Journal of Natural Gas Science and Engineering,21: 636-648.
|
[19] |
Liang C, Jiang Z X, Cao Y C, Zhang J C, Guo L. 2017. Sedimentary characteristics and paleoenvironment of shale in the Wufeng-Longmaxi Formation,North Guizhou Province,and its shale gas potential. Journal of Earth Science,28: 1020-1031.
|
[20] |
Lu Y B, Jiang S, Lu Y C, Xu S, Shu Y, Wang Y X. 2019. Productivity or preservation? the factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale,South China. Marine and Petroleum Geology,109: 22-35.
|
[21] |
Lu Y B, Hao F, Lu Y C, Xu S, Shu Z, Wang Y, Wu L. 2020. Lithofacies and depositional mechanisms of the Ordovician-Silurian Wufeng-Longmaxi organic-rich shales in the Upper Yangtze area,southern China. AAPG Bulletin, 104(1): 97-129.
|
[22] |
Mclennan S. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems,2: 1527-2027.
|
[23] |
Qiu Z, Zou C N. 2020. Controlling factors on the formation and distribution of “sweet-spot areas”of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. Journal of Asian Earth Sciences,194: 103989.
|
[24] |
Taylor S R, Mclennan S M. 1985. The continental crust: its composition and evolution. The Journal of Geology, 94(4): 57-72.
|
[25] |
Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12-32.
|
[26] |
Wang Y, Liu L F, Zheng S S, Luo Z H, Sheng Y, Wang X M. 2019. Full-scale pore structure and its controlling factors of the Wufeng-Longmaxi shale,southern Sichuan Basin,China: implications for pore evolution of highly overmature marine shale. Journal of Natural Gas Science and Engineering,67: 134-146.
|
[27] |
Wei C, Dong T, He Z L, He S, He Q, Yang R, Guo X W, Hou Y G. 2021. Major,trace-elemental and sedimentological characterization of the upper Ordovician Wufeng-lower Silurian Longmaxi formations,Sichuan Basin, South China: insights into the effect of relative sea-level fluctuations on organic matter accumulation in shales. Marine and Petroleum Geology,126: 104905.
|
[28] |
Wilde P, Quinby-Hunt M S, Erdtmann B D. 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101(1-2): 43-53.
|
[29] |
Wu J, Liang C, Hu Z Q, Liu G, Yang R C, Xie J, Wang R Y, Zhao J H. 2019. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Marine and Petroleum Geology,101: 556-565.
|
[30] |
Xu H, Zhou W, Hu Q H, Yi T, Ke J, Zhao A K, Lei Z H, Yu Y. 2021. Quartz types,silica sources and their implications for porosity evolution and rock mechanics in the Paleozoic Longmaxi Formation shale,Sichuan Basin. Marine and Petroleum Geology,128: 105036.
|
[31] |
Yan D T, Chen D Z, Wang Q C, Wang J G. 2009a. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform,South China. Science in China(Series D: Earth Sciences),52: 38-54.
|
[32] |
Yan D T, Chen D Z, Wang Q C, Wang J G, Wang Z Z. 2009b. Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform,South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 274(1-2): 32-39.
|
[33] |
Yang S C, Hu W X, Yao S P, Wang X L, He W H, Wang Y, Zhu F, Sun F N. 2020. Constraints on the accumulation of organic matter in Upper Ordovician-lower Silurian black shales from the Lower Yangtze region,South China. Marine and Petroleum Geology,120: 104544.
|
[34] |
Zhang L C, Xiao D S, Lu S F, Jiang S, Lu S D. 2019. Effect of sedimentary environment on the formation of organic-rich marine shale: insights from major/trace elements and shale composition. International Journal of Coal Geology,204: 34-50.
|
[35] |
Zhang X G, Lin C Y, Zahid M A, Jia X P, Zhang T. 2017. Paleosalinity and water body type of Eocene Pinghu Formation,Xihu Depression,East China Sea Basin. Journal of Petroleum Science and Engineering,158: 469-478.
|
[36] |
Zhou L, Algeo T J, Shen J, Hu Z F, Gong H M, Xie S C, Huang J H, Gao S. 2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology,420: 223-234.
|
[37] |
Zhou Q, Xiao X.M, Tian H, Wilkins R W T. 2013. Oil charge history of bitumens of differing maturities in exhumed Paleozoic reservoir rocks at Tianjingshan,NW Sichuan Basin,southern China. Journal of Petroleum Geology,36: 363-382.
|