[1] |
崔滔, 焦养泉, 杜远生, 余文超, 计波, 雷志远, 翁申富, 金中国, 和秀林. 2013. 黔北务正道地区铝土矿形成环境的古盐度识别. 地质科技情报, 32(1): 46-51.
|
|
[Cui T, Jiao Y Q, Du Y S, Yu W C, Ji B, Lei Z Y, Weng S F, Jin Z G, He X L. 2013. Analysis on paleosalinity of sedimentary environment of bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Geological Science and Technology Information, 32(1): 46-51]
|
[2] |
段玮, 曾翔, 蔡进功, 李政, 王长轩, 林茹. 2022. 渤海湾盆地东营凹陷沉积环境和古生产力对优质烃源岩形成的控制: 以牛庄洼陷沙河街组为例. 天然气地球科学, 33(11): 1754-1767.
|
|
[Duan W, Zeng X, Cai J G, Li Z, Wang C X, Lin R. 2022. Control of sedimentary environment and paleoproductivity on the formation of high-quality hydrocarbon source rocks in Dongying sag,Bohai Bay Basin: case study of the Shahejie Formation in Niuzhuang sag. Natural Gas Geoscience, 33(11): 1754-1767]
|
[3] |
高阳东, 林鹤鸣, 汪旭东, 邱欣卫, 阙晓铭, 李敏, 赵泽颖, 陈艳. 2022. 珠江口盆地陆丰凹陷文昌组沉积地球化学特征及古环境意义. 现代地质, 36(1): 118-129.
|
|
[Gao Y D, Lin H M, Wang X D, Qiu X W, Que X M, Li M, Zhao Z Y, Chen Y. 2022. Geochemical constraints on the sedimentary environment of Wenchang Formation in Pearl River Mouth Basin and its paleoenvironmental implications. Geoscience, 36(1): 118-129]
|
[4] |
何雁兵, 雷永昌, 邱欣卫, 肖张波, 郑仰帝, 刘冬青. 2023. 珠江口盆地陆丰南地区文昌组沉积古环境及烃源岩有机质富集主控因素研究. 地学前缘: 31( 2): 359-376.
|
|
[He Y B, Lei Y C, Qiu X W, Xiao Z B, Zheng Y D, Liu D Q. 2023. Sedimentary paleoenvironment and main controlling factors of organic enrichment in source rocks of the Wenchang Formation in southern Lufeng. Pearl River Mouth Basin. Earth Science Froutiers, 31(2):359-376]
|
[5] |
姜福杰, 郭婧, 庞雄奇, 陈迪, 王建伟, 汪英勋, 李亚茜, 陈雪, 郭婷玮, 房舟, 王晓昊, 齐振国, 文嘉豪. 2023. 渤海湾盆地南堡凹陷全油气系统3类油气资源联合评价. 石油学报, 44(9): 1472-1486.
|
|
[Jiang F J, Guo J, Pang X Q, Chen D, Wang J W, Wang Y X, Li Y Q, Chen X, Guo T W, Fang Z, Wang X H, Qi Z G, Wen J H. 2023. Joint evaluation of three types of oil-gas resources in whole petroleum system of Nanpu sag,Bohai Bay Basin. Acta Petrolei Sinica, 44(9): 1472-1486]
|
[6] |
静禹钱, 雷闯, 刘克栋, 李振华. 2023. 南堡凹陷古近系沙河街组沉积环境和物源: 来自微量和稀土元素地球化学的证据. 地质科技通报, 42(1): 350-359.
|
|
[Jing Y Q, Lei C, Liu K D, Li Z H. 2023. Deposition environment and provenance of the Paleogene Shahejie Formation in Nanpu sag: evidences from trace and rare earth element geochemistry. Bulletin of Geological Science and Technology, 42(1): 350-359]
|
[7] |
兰敏文, 宋友桂, 程良清. 2022. 湖泊碳酸盐矿物的形成过程及古气候环境指示意义. 地球科学与环境学报, 44(2): 156-170.
|
|
[Lan M W, Song Y G, Cheng L Q. 2022. Review on formation of lacustrine carbonate minerals and their paleoclimate significance. Journal of Earth Sciences and Environment, 44(2): 156-170]
|
[8] |
雷闯, 叶加仁, 殷世艳, 吴景富, 静禹钱. 2024. 东海盆地丽水凹陷古气候和古环境对有机质富集的约束: 来自古新统泥岩的元素地球化学证据. 地球科学, 49(7): 2359-2372.
|
|
[Lei C, Ye J R, Yin S Y, Wu J F, Jing Y Q. 2024. Constraints of paleoclimate and paleoenvironment on organic matter enrichment in Lishui sag,East China Sea Basin: evidence from element geochemistry of Paleocene mudstones. Earth Science, 49(7): 2359-2372]
|
[9] |
李浩, 陆建林, 李瑞磊, 王保华, 徐文, 左宗鑫, 王苗, 刘娅昭. 2017. 长岭断陷下白垩统湖相烃源岩形成古环境及主控因素. 地球科学, 42(10): 1774-1786.
|
|
[Li H, Lu J L, Li R L, Wang B H, Xu W, Zuo Z X, Wang M, Liu Y Z. 2017. Generation paleoenvironment and its controlling factors of Lower Cretaceous lacustrine hydrocarbon source rocks in Changling Depression,South Songliao Basin. Earth Science, 42(10): 1774-1786]
|
[10] |
孙中良, 王芙蓉, 侯宇光, 罗京, 郑有恒, 吴世强, 朱钢添. 2020. 盐湖页岩有机质富集主控因素及模式. 地球科学, 45(4): 1375-1387.
|
|
[Sun Z L, Wang F R, Hou Y G, Luo J, Zheng Y H, Wu S Q, Zhu G T. 2020. Main controlling factors and modes of organic matter enrichment in salt lake shale. Earth Science, 45(4): 1375-1387]
|
[11] |
田杨, 叶加仁, 雷闯, 杨宝林, 单超, 何清吟, 刘一茗. 2016. 东海陆架盆地丽水—椒江凹陷月桂峰组烃源岩发育控制因素及形成模式. 地球科学, 41(9): 1561-1571.
|
|
[Tian Y, Ye J R, Lei C, Yang B L, Shan C, He Q Y, Liu Y M. 2016. Development controlling factors and forming model for source rock of Yueguifeng Formation in Lishui-Jiaojiang sag,the East China Sea continental shelf basin. Earth Science, 41(9): 1561-1571]
|
[12] |
王华, 赵淑娥, 林正良, 姜华, 黄传炎, 廖远涛, 廖计华. 2012. 南堡凹陷东营组巨厚堆积的关键控制要素及其油气地质意义. 地学前缘, 19(1): 108-120.
|
|
[Wang H, Zhao S E, Lin Z L, Jiang H, Huang C Y, Liao Y T, Liao J H. 2012. The key control factors and its petroleum and geological significance of extra-thick deposition in Dongying Formation,Nanpu sag. Earth Science Frontiers, 19(1): 108-120]
|
[13] |
王鹏万, 邹辰, 李娴静, 马立桥, 蒋立伟, 贾丹, 梅珏, 黄羚, 陈向阳, 李庆飞. 2021. 滇黔北地区筇竹寺组元素地球化学特征及古环境意义. 中国石油大学学报(自然科学版), 45(2): 51-62.
|
|
[Wang P W, Zou C, Li X J, Ma L J, Jiang L W, Jia D, Mei Y, Huang L, Chen X Y, Li Q F. 2021. Geochemical characteristics of element Qiongzhusi Group in Dianqianbei Area and paleoenvironmental significance. Journal of China University of Petroleum(Edition of Natural Science), 45(2): 51-62]
|
[14] |
张天福, 孙立新, 张云, 程银行, 李艳锋, 马海林, 鲁超, 杨才, 郭根万. 2016. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义. 地质学报, 90(12): 3454-3472.
|
|
[Zhang T F, Sun L X, Zhang Y, Cheng Y H, Li Y F, Ma H L, Lu C, Yang C, Guo G W. 2016. Geochemical characteristics of the Jurassic Yan’an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications. Acta Geologica Sinica, 90(12): 3454-3472]
|
[15] |
郑玉龙, 马志强, 王佰长, 袁国礼, 覃建勋. 2015. 黑龙江省柳树河盆地始新统八虎力组油页岩元素地球化学特征及沉积环境. 古地理学报, 17(5): 689-698.
|
|
[Zheng Y L, Ma Z G, Wang B C, Yuan G L, Qin J X. 2015. Geochemistry characteristics and sedimentary environment of oil shale from the Eocene Bahuli Formation in Liushuhe Basin,Heilongjiang Province. Journal of Palaeogeography(Chinese Edition), 17(5): 689-698]
|
[16] |
Adachi M, Yamamoto K, Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sedimentary Geology,47: 125-148.
|
[17] |
Adegoke A K, Adegoke W H, Hakimi M H, Yandoka B S. 2015. Geochemical characterisation and organic matter enrichment of Upper Cretaceous Gongila shales from Chad(Bornu)Basin,Northeastern Nigeria: bioproductivity versus anoxia conditions. Journal of Petroleum Science and Engineering,135: 73-87.
|
[18] |
Carroll A R, Bohacs K M. 1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27(2): 99-102.
|
[19] |
Carroll A R, Bohacs K M. 2001. Lake-type controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 85(6): 1033-1053.
|
[20] |
Chandra K, Mishra C S, Samanta U, Gupta A, Mehrotra K L. 1994. Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the Cambay basin. Organic Geochemistry,21: 313-321.
|
[21] |
Didyk B M, Simoneit B R T, Brassell S C, Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature,272: 216-222.
|
[22] |
Farhaduzzaman M, Abdullah W H, Islam M A. 2012. Depositional environment and hydrocarbon source potential of the Permian Gondwana coals from the Barapukuria Basin,Northwest Bangladesh. International Journal of Coal Geology, 90-91: 162-179.
|
[23] |
Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924.
|
[24] |
Gyawali A R, Wang J B, Ma Q F, Wang Y, Xu T, Guo Y, Zhu L P. 2019. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co,central Tibet. Palaeogeography, Palaeoclimatology, Palaeocology,516: 101-112.
|
[25] |
Hanson A D, Zhang S C, Moldowan J M, Liang D G, Zhang B M. 2000. Molecular organic geochemistry of the Tarim Basin,Northwest China. AAPG Bulletin, 84(8): 1109-1128.
|
[26] |
Hao F, Zhou X H, Zhu Y M, Zhu Y M, Yang Y Y. 2011. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate,Bohai Bay Basin,China. Organic Geochemistry,42: 323-339.
|
[27] |
Hatch J R, Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environmental and geochemistry of the upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestope,Wabaunsee County,Kansas,USA. Chemical Geology,99: 65-82.
|
[28] |
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotope composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research,73: 27-49.
|
[29] |
Lei C, Yin S Y, Ye J R, Wu J F, Wang Z S, Gao B. 2021. Characteristics and deposition models of the Paleocene source rocks in the Lishui sag, East China Sea Shelf Basin: evidences from organic and inorganic geochemistry. Journal of Petroleum Science and Engineering,200: 108342.
|
[30] |
Morford J L, Emerson S R, Breckel E J, Kim S H. 2005. Diagenesis of oxyanions(V,U,Re,and Mo)in pore waters and sediments from a continental margin. Geochimica et Cosmochimica Acta,69: 5021-5032.
|
[31] |
Ocubalidet S G, Rimmer S M, Conder J A. 2018. Redox conditions associated with organic carbon accumulation in the Late Devonian New Albany Shale,West-Central Kentucky,Illinois Basin. International Journal of Coal Geology,190: 42-55.
|
[32] |
Peters K E, Walters, C C, Moldowan J M. 2005. The Biomarker Guide Volume 1:Biomarkers and Isotopes in the Environment and Human History. New York: Cambridge University Press.
|
[33] |
Qiu X W, Liu C Y, Wang F F, Deng Y, Mao G Z. 2015. Trace and rare earth element geochemistry of the upper Triassic mudstones in the southern Ordos Basin,central China. Geological Journal, 50(4): 399-413.
|
[34] |
Quan Y B, Hao F, Liu J Z. Zhao D J, Tian J Q, Wang Z F. 2017. Source rock deposition controlled by tectonic subsidence and climate in the western Pearl River Mouth Basin,China: Evidence from organic and inorganic geochemistry. Marine and Petroleum Geology,79: 1-17.
|
[35] |
Scheffler K, Buehmann D, Schwark L. 2006. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies-Response to climate evolution and sedimentary environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1/2): 184-203.
|
[36] |
Taylor S R, McLennan S M. 1985. The Continental Crust:its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford London: Blackwell Scientific Publication.
|
[37] |
Ten Haven H L, De leeum J W, Rullkötter J, Sinninghe Damsté J S. 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature,330: 641-643.
|
[38] |
Ten Haven H L, Rohmer M, Rullkötter J, Bisseret P. 1989. Tetrahymanol,the most likely precursor of gammacerane,occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta,53: 3073-3079.
|
[39] |
Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology,232: 12-32.
|
[40] |
Tripathy G R, Singh S K, Ramaswamy V. 2014. Major and trace element geochemistry of bay of bengal sediments: implications to provenances and their controlling factors. Palaeogeography,Palaeoclimatology,Palaeoecology,397: 20-30.
|
[41] |
Wang X Y, Jin Z K, Zhao J H, Zhu Y X, Hu Z Q, Liu G X, Jiang T, Wang H, Li S, Shi S. 2020. Depositional environment and organic matter accumulation of Lower Jurassic nonmarine fine-grained deposits in the Yuanba Area,Sichuan Basin,SW China. Marine and Petroleum Geology,116: 1-18.
|
[42] |
Wei W, Algeo T J. 2019. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochemica et Cosmochimica Acta,287: 341-366.
|
[43] |
Xu G, Hannah J L, Bingen B, Georgiev S, Stein H J. 2012. Digestion methods for trace element measurements in shales: paleoredox proxies examined. Chemical Geology, 324-325: 132-147.
|
[44] |
Yuan W, Liu G D, Stebbins A, Xu L M, Niu X B, Luo W B, Li C Z. 2017. Reconstruction of redox conditions during deposition of organic-rich shales of the Upper Triassic Yanchang Formation,Ordos Basin,China. Palaeogeography, Palaeoclimatology, Palaeoecology,486: 158-170.
|