[1] |
昌建波. 2020. 珠江口盆地珠江组强制海退砂体与岩性油气藏: 以惠州凹陷南部为例. 海相油气地质, 25(2): 121-131.
|
|
[Chang J B. 2020. Forced-regressive sand bodies and the related lithologic reservoirs of Zhujiang Formation in Huizhou sag,Pearl River Mouth Basin. Marine Origin Petroleum Geology, 25(2): 121-131]
|
[2] |
程锦翔, 邓敏, 王正和, 余谦, 张海全, 刘伟, 赵安坤, 杨贵来. 2022. 康滇古陆西侧早志留世古海洋氧化—还原环境及优质烃源岩发育模式: 以盐源地区CYD2井为例. 地质通报, 41(10): 1813-1828.
|
|
[Cheng J X, Deng M, Wang Z H, Yu Q, Zhang H Q, Liu W, Zhao A K, Yang G L. 2022. Paleo-marine redox conditions and development model of high-quality source rocks of the Early Silurian on the west side of Kangdian Oldland: a case study of CYD 2 well in Yanyuan area. Geological Bulletin of China, 41(10): 1813-1828]
|
[3] |
程世秀, 李三忠, 索艳慧, 刘鑫, 余珊, 戴黎明, 马云, 赵淑娟, 王霄飞, 安慧婷. 2012. 南海北部新生代盆地群构造特征及其成因. 海洋地质与第四纪地质, 32(6): 79-93.
|
|
[Cheng S X, Li S Z, Suo Y H, Liu X, Yu S, Dai L M, Ma Y, Zhao S J, Wang X F, An H T. 2012. Cenozoic tectonics and dynamics of basin groups of the northern South China Sea. Marine Geology & Quaternary Geology, 32(6): 79-93]
|
[4] |
丁修建, 高天泽, 李淑凤, 赵龙梅, 孙宇鹏. 2023. 煤系烃源岩特征与发育机制研究现状. 科学技术与工程, 23(13): 5373-5389.
|
|
[Ding X J, Gao T Z, Li S F, Zhao L M, Sun Y P. 2023. Research status of characteristics and development mechanism of coal-measure source rocks. Science Technology and Engineering, 23(13): 5373-5389]
|
[5] |
高阳东, 朱伟林, 彭光荣, 龙祖烈, 汪旭东, 石创, 陈聪, 黄玉平, 张博. 2024. 珠江口盆地白云凹陷烃源岩评价及油气资源分布预测. 石油勘探与开发, 51(5): 986-996.
|
|
[Gao Y D, Zhu W L, Peng G R, Long Z L, Wang X D, Shi C, Chen C, Huang Y P, Zhang B. 2024. Evaluation of source rocks and prediction of oil and gas resources distribution in Baiyun Sag,Pearl River Mouth Basin,China. Petroleum Exploration and Development, 51(5): 986-996]
|
[6] |
郭书生, 廖高龙, 梁豪, 彭志春, 王世越. 2021. 琼东南盆地BD21井深水区天然气勘探重大突破及意义. 中国石油勘探, 26(5): 49-59.
|
|
[Guo S S, Liao G L, Liang H, Peng Z C, Wang S Y. 2021. Major breakthrough and significance of deep-water gas exploration in Well BD 21 in Qiongdongnan Basin. China Petroleum Exploration, 26(5): 49-59]
|
[7] |
何登发, 马永生, 刘波, 蔡勋育, 张义杰, 张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12.
|
|
[He D F, Ma Y S, Liu B, Cai X Y, Zhang Y J, Zhang J. 2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Earth Science Frontiers, 26(1): 1-12]
|
[8] |
何家雄, 施小斌, 夏斌, 刘海龄, 阎贫, 姚永坚, 张树林. 2007. 南海北部边缘盆地油气勘探现状与深水油气资源前景. 地球科学进展, 22(3): 261-270.
|
|
[He J X, Shi X B, Xia B, Liu H L, Yan P, Yao Y J, Zhang S L. 2007. The status of petroleum exploration in the northern South China Sea and the resource potential in the deep-water areas. Advances in Earth Science, 22(3): 261-270]
|
[9] |
黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质, 43(1): 1-25.
|
|
[Li M W, Ma X X, Jin Z J, Li Z M, Jiang Q G, Wu S Q, Li Z, Xu Z X. 2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology, 43(1): 1-25]
|
[10] |
李红佼, 张廷山, 张喜, 肖强, 高璐彪. 2023. 天文轨道周期调制的海平面变化对生物礁发育的影响: 以川东北地区晚二叠世长兴期为例. 断块油气田, 30(1): 52-59.
|
|
[Li H J, Zhang T S, Zhang X, Xiao Q, Gao L B. 2023. Effects of sea level change modulated by astronomical orbital period on organic reefs development: a case study of Late Permian Changxing in Northeast Sichuan. Fault-Block Oil & Gas Field, 30(1): 52-59]
|
[11] |
李猛, 李昕, P.HESSELBO S, 李明杰, 刘文进, 吴伟, 潘结南, 高瑞珍. 2024. 冰室-(超)温室气候动荡期湖平面演化及天文轨道气候作用. 中国科学: 地球科学, 54(1): 264-280.
|
|
[Li M, Li X, Hesselbo P, Li M J, Liu W J, Wu W, Pan J N, Gao R Z. 2024. Orbital pacing and secular evolution of lake-level changes reconstructed by sedimentary noise modeling during the Early Jurassic icehouses-(super)greenhouses. Science China Earth Sciences, 54(1): 264-280]
|
[12] |
李前裕, 汪品先. 2007. 新近纪海相生物地层事件年龄新编. 地层学杂志, 31(3): 197-208.
|
|
[Li Q Y, Wang P X. 2007. New ages for Neogene marine biostratigraphic events. Journal of Stratigraphy, 31(3): 197-208]
|
[13] |
李友川, 米立军, 张功成, 傅宁, 孙玉梅. 2011. 南海北部深水区烃源岩形成和分布研究. 沉积学报, 29(5): 970-979.
|
|
[Li Y C, Mi L J, Zhang G C, Fu N, Sun Y M. 2011. The formation and distribution of source rocks in the deep-water area of the northern South China Sea. Acta Sedimentologica Sinica, 29(5): 970-979]
|
[14] |
刘池洋, 赵俊峰, 马艳萍, 王建强, 熊林芳, 陈建军, 毛光周, 张东东, 邓煜. 2014. 富烃凹陷特征及其形成研究现状与问题. 地学前缘, 21(1): 75-88.
|
|
[Liu C Y, Zhao J F, Ma Y P, Wang J Q, Xiong L F, Chen J J, Mao G Z, Zhang D D, Deng Y. 2014. The advances and problems in the study of the characteristics and formation of hydrocarbon-rich sag. Earth Science Frontiers, 21(1): 75-88]
|
[15] |
刘晓锋, 孙志鹏, 刘新宇, 刘东生, 翟世奎, 龙海燕, 姜龙杰, 毕东杰. 2018. 南海北部深水区LS33a钻井微体古生物年代地层格架. 沉积学报, 36(5): 890-902.
|
|
[Liu X F, Sun Z P, Liu X Y, Liu D S, Zhai S K, Long H Y, Jiang L J, Bi D J. 2018. Chronostratigraphic framework based on micro-paleontological data from drilling LS33a in deep water area of northern South China Sea. Acta Sedimentologica Sinica, 36(5): 890-902]
|
[16] |
米立军, 周守为, 谢玉洪, 张功成, 杨海长. 2022. 南海北部深水区油气勘探进展与未来展望. 中国工程科学, 24(3): 58-65.
|
|
[Mi L J, Zhou S W, Xie Y H, Zhang G C, Yang H C. 2022. Deep-water oil and gas exploration in northern South China Sea: progress and outlook. Strategic Study of Chinese Academy of Engineering, 24(3): 58-65]
|
[17] |
彭军, 于乐丹, 许天宇, 韩浩东, 杨一茗. 2022. 天文地层学研究程序及其在渤海湾盆地东营凹陷的应用实例分析. 石油与天然气地质, 43(6): 1292-1308.
|
|
[Peng J, Yu L D, Xu T Y, Han H D, Yang Y M. 2022. Research procedure of astrostratigraphy and case study of Dongying Sag,Bohai Bay Basin. Oil & Gas Geology, 43(6): 1292-1308]
|
[18] |
彭晓东, 徐锦龙, 方朝刚, 沈仕豪, 章诚诚. 2022. 宣广盆地中二叠世栖霞组层序地层特征及页岩气勘探前景. 华东地质, 57(10): 3189-3207.
|
|
[Peng X D, Xu J L, Fang C G, Shen S H, Zhang C C. 2022. Sequence stratigraphic characteristics and shale gas exploration prospect of Middle Permian Qixia Formation in the Xuancheng-Guangde Basin. East China Geology, 57(10): 3189-3207]
|
[19] |
邱宁, 王章稳, 王振峰, 孙志鹏, 孙珍, 周蒂. 2014. 南海北部琼东南盆地地层结构与地壳伸展特征. 地球物理学报, 57(10): 3189-3207.
|
|
[Qiu N, Wang Z W, Wang Z F, Sun Z P, Sun Z, Zhou D. 2014. Tectonostratigraphic structure and crustal extension of the Qiongdongnan Basin,northern South China Sea. Chinese Journal of Geophysics, 57(10): 3189-3207]
|
[20] |
宋翠玉, 吕大炜. 2022. 米兰科维奇旋回时间序列分析法研究进展. 沉积学报, 40(2): 380-385.
|
|
[Song C Y, Lü D W. 2022. Advances in time series analysis methods for Milankovitch cycles. Acta Sedimentologica Sinica, 40(2): 380-395]
|
[21] |
田军, 吴怀春, 黄春菊, 李明松, 马超, 汪品先. 2022. 从 40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568.
|
|
[Tian J, Wu H C, Huang C J, Li M S, Ma C, Wang P X. 2022. Revisiting the Milankovitch theory from the perspective of the 405ka long eccentricity cycle. Earth Science, 47(10): 3543-3568]
|
[22] |
田世峰, 陈中强, 查明. 2012. 珠江口盆地中中新世韩江组天文调谐地质年代表. 中国石油大学学报(自然科学版), 36(1): 27-32.
|
|
[Tian S F, Chen Z Q, Zha M. 2012. Astronomical time scale of middle Miocene Hanjiang Formation in Pearl River Mouth Basin,South China Sea. Journal of China University of Petroleum(Edition of Natural Science), 36(1): 27-32]
|
[23] |
汪品先. 2006. 地质计时的天文“钟摆”. 海洋地质与第四纪地质,(1): 1-7.
|
|
[Wang P X. 2006. Astronomical “pendulum” for geological clock. Marine Geology & Quaternary Geology, 26(1): 1-7]
|
[24] |
王家豪, 庞雄, 王华, 柳保军, 陈鑫鑫. 2024. 珠江口盆地白云凹陷中新统珠江组潮流改造的砂质海底扇沉积. 地球科学, 49(1): 71-83.
|
|
[Wang J H, Pang X, Wang H, Liu B J, Chen X X. 2024. Tide current-reworked sandy submarine fan deposits in Miocene Zhujiang Formation,Baiyun Sag of Pearl River Mouth Basin. Earth Science, 49(1): 71-83]
|
[25] |
吴景富, 杨树春, 张功成, 单竟男, 唐晓音, 梁建设. 2013. 南海北部深水区盆地热历史及烃源岩热演化研究. 地球物理学报, 56(1): 170-180.
|
|
[Wu J F, Yang S C, Zhang G C, Shan J N, Tang X Y, Liang J S. 2013. Geothermal history and thermal evolution of the source rocks in the deep-water area of the northern South China Sea. Chinese Journal of Geophysics, 56(1): 170-180]
|
[26] |
吴克强, 解习农, 裴健翔, 任建业, 尤丽, 姜涛, 权永彬. 2023. 超伸展陆缘盆地深部结构及油气勘探意义: 以琼东南盆地为例. 石油与天然气地质, 44(3): 651-661.
|
|
[Wu K Q, Xie X N, Pei J X, Ren J Y, You L, Jiang T, Quan Y B. 2023. Deep architecture of hyperextended marginal basin and implications for hydrocarbon exploration: a case study of Qiongdongnan Basin. Oil & Gas Geology, 44(3): 651-661]
|
[27] |
肖强, 张廷山, 张喜, 李红佼, 雍锦杰, 刘宇龙, 李潇雨. 2021. 川南五峰组—龙马溪组有机质富集规律: 基于旋回地层学的研究. 海相油气地质, 26(2): 105-112.
|
|
[Xiao Q, Zhang T S, Zhang X, Li H J, Yong J J, Liu Y L, Li X Y. 2021. Organic matter enrichment in Wufeng Formation-Longmaxi Formation in southern Sichuan: based on cyclostratigraphy. Marine Origin Petroleum Geology, 26(2): 105-112]
|
[28] |
徐长贵, 尤丽. 2022. 琼东南盆地松南—宝岛凹陷北坡转换带特征及其对大中型气田的控制. 石油勘探与开发, 49(6): 1061-1072.
|
|
[Xu C G, You L. 2022. North slope transition zone of Songnan-Baodao sag in Qiongdongnan Basin and its control on medium and large gas fields,South China Sea. Petroleum Exploration and Development, 49(6): 1061-1072]
|
[29] |
玄昌姬, 李前裕, 刘传联. 2024. 珠江口盆地荔湾凹陷W22井渐新世生物地层研究. 微体古生物学报, 41(1): 45-52.
|
|
[Xuan C J, Li Q Y, Liu C L. 2024. Oligocene biostratigraphy of Well W 22 in the Liwan Sag of the Pearl River Mouth Basin. Acta Micropalaeontologica Sinica, 41(1): 45-52]
|
[30] |
曾清波, 陈国俊, 张功成, 纪沫, 韩银学, 郭帅, 王龙颖. 2015. 珠江口盆地深水区珠海组陆架边缘三角洲特征及其意义. 沉积学报, 33(3): 595-606.
|
|
[Zeng Q B, Chen G J, Zhang G C, Ji M, Han Y X, Guo S, Wang L Y. 2015. The shelf-margin delta feature and its significance in Zhuhai Formation of deep-water area,Pearl River Mouth Basin. Acta Sedimentologica Sinica, 33(3): 595-606]
|
[31] |
曾智伟. 2020. 南海北部珠江口盆地古近纪源-汇系统耦合研究. 中国地质大学(武汉)博士学位论文.
|
|
[Zeng Z W. 2020. Source-to-sink(S2S)system analysis of the Paleogene in the Pearl River Mouth Basin,northern South China Sea. Doctoral dissertation of China University of Geosciences(Wuhan)]
|
[32] |
张功成. 2023. 南海渐进式边缘海构造旋回控制深水油气成藏理论. 石油学报, 44(4): 569-582.
|
|
[Zhang G C. 2023. Theory of deepwater hydrocarbon accumulation controlled by progressive tectonic cycles of marginal sea in the South China Sea. Acta Petrolei Sinica, 44(4): 569-582]
|
[33] |
张青林, 张向涛, 李洪博, 宋朋霖, 贾兆扬, 曾婷, 陶文芳. 2022. 南海北部狭窄陆架—断裂陆坡控制的大型深水扇体系. 地球科学, 47(7): 2421-2432.
|
|
[Zhang Q L, Zhang X T, Li H B, Song P L, Jia Z Y, Zeng T, Tao W F. 2022. Large submarine fan system controlled by narrow continental shelf-faulted continental slope in northern South China Sea. Earth Science, 47(7): 2421-2432]
|
[34] |
张瑞, 金之钧, 朱如凯, 李明松, 惠潇, 魏韧, 贺翔武, 张谦. 2023. 中国陆相富有机质页岩沉积速率研究及其页岩油勘探意义. 石油与天然气地质, 44(4): 829-845.
|
|
[Zhang R, Jin Z J, Zhu R K, Li M S, Hui X, Wei R, He X W, Zhang Q. 2023. Investigation of deposition rate of terrestrial organic-rich shales in China and its implications for shale oil exploration. Oil & Gas Geology, 44(4): 829-845]
|
[35] |
张尚锋, 徐敏, 唐武, 徐恩泽, 王雅宁, 朱锐. 2024. 琼东南盆地北礁凹陷陵水组旋回地层学及古气候分析. 地质科技通报,1-13.
|
|
[Zhang S F, Xu M, Tang W, Xu E Z, Wang Y N, Zhu R. 2024. Cyclostratigraphy and paleoclimate analysis of Lingshui Formation in Beijiao Sag,Qiongdongnan Basin. Geological Science and Technology Bulletin,1-13]
|
[36] |
赵飞, 祝幼华, 季兴开, 冯净. 2017. 南海北部珠江口盆地深水区 LW5井晚渐新世—早中新世孢粉组合. 微体古生物学报, 34(2): 201-210.
|
|
[Zhao F, Zhu Y H, Ji X K, Feng J. 2017. Late Oligocene to early Miocene palynological assemblages of Well LW 5 in the deep-water area,Pearl River Mouth Basin,northern South China Sea. Acta Micropalaeontologica Sinica, 34(2): 201-210]
|
[37] |
赵明辉, 袁野, 张佳政, 张翠梅, 高金尉, 王强, 孙珍, 程锦辉. 2023. 南海北部被动陆缘洋陆转换带张裂—破裂研究新进展. 热带海洋学报, 43(2),173-183.
|
|
[Zhao M H, Yuan Y, Zhang J Z, Zhang C M, Gao J W, Wang Q, Sun Z, Cheng J H. 2023. New developments on the rift-breakup of the continent-ocean transition zone in the northern margin of the South China Sea. Journal of Tropical Oceanography, 43(2): 173-183]
|
[38] |
赵韶华, 王雅宁, 张尚锋, 朱锐, 徐恩泽, 易志凤, 巩高阳, 王玉瑶, 刘浩童. 2022. 南海北部中新世古气候分析: 基于天文旋回的冷却事件响应. 海洋地质前沿, 38(4): 53-62.
|
|
[Zhao S H, Wang Y N, Zhang S F, Zhu R, Xu E Z, Yi Z F, Gong G Y, Wang Y Y, Liu H T. 2022. Miocene paleoclimate analysis of the northern South China Sea: response to cooling events based on astronomical cycles. Marine Geology Frontiers, 38(4): 53-62]
|
[39] |
郑洪波, 陈国成, 谢昕, 梅西, 李建如, 葛黄敏, 黄恩清. 2008. 南海晚第四纪陆源沉积: 粒度组成,动力控制及反映的东亚季风演化. 第四纪研究, 28(3): 414-424.
|
|
[Zheng H B, Chen G C, Xie X, Mei X, Li J R, Ge H M, Huang E Q. 2008. Grain size distribution and dynamic control of late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution. Quaternary Sciences, 28(3): 414-424]
|
[40] |
周杰, 杨希冰, 杨金海, 甘军, 吴昊, 何小胡, 胡斌. 2019. 琼东南盆地松南低凸起古近系构造-沉积演化特征与天然气成藏. 地球科学, 44(8): 2704-2716.
|
|
[Zhou J, Yang X B, Yang J H, Gan J, Wu H, He X H, Hu B. 2019. Structure-sedimentary evolution and gas accumulation of Paleogene in Songnan Low Uplift of the Qiongdongnan Basin. Earth Science, 44(8): 2704-2716]
|
[41] |
朱春霞, 张尚锋, 王雅宁, 徐恩泽. 2022. 陆丰凹陷韩江组旋回地层学分析及天文年代标尺的建立. 海洋地质前沿, 38(4): 42-52.
|
|
[Zhu C X, Zhang S F, Wang Y N, Xu E Z. 2022. Cyclical stratigraphic analysis and establishment of astronomical chronograph of Hanjiang Formation in Lufeng Sag. Marine Geology Frontiers, 38(4): 42-52]
|
[42] |
Ao H, Rohling E J, Zhang R, Roberts A P, Holbourn A E, Ladant J-B, Dupont-Nivet G, Kuhnt W, Zhang P, Wu F. 2021. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary. Nature Communications, 12(1): 6935.
|
[43] |
Bechtel A, Jia J, Strobl S A, Sachsenhofer R F, Liu Z, Gratzer R, Püttmann W. 2012. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao BasinNE China): implications from geochemical analysis. Organic Geochemistry,46: 76-95.
|
[44] |
Beglinger S E, Wees J D, Cloetingh S, Doust H. 2012. Tectonic subsidence history and source-rock maturation in the Campos Basin,Brazil. Petroleum Geoscience, 18(2): 153-172.
|
[45] |
Berggren W A, Kent D V, Swisher C C, Aubry M P, Aubry M P, Hardenbol J. 1995. A revised Cenozoic geochronology and chronostratigraphy. Geochronology,Time Scales and Global Stratigraphic Correlation,54: 129-212.
|
[46] |
Bralower T J, Thierstein H R. 1984. Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology, 12(10): 614-618.
|
[47] |
Bruch A A, Utescher T, Mosbrugger V. 2011. Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography,Palaeoclimatology,Palaeoecology, 304(3-4): 202-211.
|
[48] |
Chen R, Bai X, Huang C, Wu X, Shang F. 2024. How marine incursions affect the sedimentary environment and the quality of source rocks in the Upper Cretaceous Songliao Basin,NE China. Marine and Petroleum Geology,170: 107140.
|
[49] |
Cramer B, Toggweiler J, Wright J, Katz M, Miller K. 2009. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography,24: PA4216.
|
[50] |
De Lira Mota M A, Dunkley Jones T, Sulaiman N, Edgar K M, Yamaguchi T, Leng M J, Adloff M, Greene S E, Norris R, Warren B. 2023. Multi-proxy evidence for sea level fall at the onset of the Eocene-Oligocene transition. Nature Communications, 14(1): 4748.
|
[51] |
Ding W, Hou D, Gan J, Wu P, Zhang M, George S C. 2021. Palaeovegetation variation in response to the late Oligocene-early Miocene East Asian summer monsoon in the Ying-Qiong Basin,South China Sea. Palaeogeography,Palaeoclimatology,Palaeoecology,567: 110205.
|
[52] |
Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science, 320(5879): 1034-1039.
|
[53] |
Fischer G, Wefer G. 1999. Use of Proxies in Paleoceanography: Examples from the South Atlantic;with 43 Tables. Springer-Verlag: 489-512
|
[54] |
Gonçalves F T. 2002. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin,Brazil: paleolimnological inferences and source rock models. Organic Geochemistry, 33(1): 67-80.
|
[55] |
Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels scince the Triassic. Science, 235(4793): 1156-1167.
|
[56] |
Herbert T D, Stallard R, Fischer A G. 1986. Anoxic events,productivity rhythms,and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy. Paleoceanography, 1(4): 495-506.
|
[57] |
Hochmuth K, Whittaker J M, Sauermilch I, Klocker A, Gohl K, LaCasce J H. 2022. Southern Ocean biogenic blooms freezing-in Oligocene colder climates. Nature Communications, 13(1): 6785.
|
[58] |
Huang H, Gao Y, Ma C, Jones M M, Zeeden C, Ibarra D E, Wu H, Wang C. 2021. Organic carbon burial is paced by a-173-ka obliquity cycle in the middle to high latitudes. Science Advances, 7(28): eabf9489.
|
[59] |
Katz B J. 1995. Factors controlling the development of lacustrine petroleum source rocks: an update. Paleogeography,Paleoclimate,and Source Rocks: 61-79.
|
[60] |
Lanci L, Muttoni G, Erba E. 2010. Astronomical tuning of the Cenomanian Scaglia Bianca Formation at Furlo,Italy. Earth and Planetary Science Letters, 292(1-2): 231-237.
|
[61] |
Laskar J, Fienga A, Gastineau M, Manche H. 2011. La2010: a new orbital solution for the long-term motion of the Earth. Astronomy Astrophysics: 532.
|
[62] |
Li M, Hinnov L, Huang C, Ogg J G. 2018. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing. Nature Communications, 9(1): 1004.
|
[63] |
Li M, Hinnov L, Kump L. 2019. Acycle: time-series analysis software for paleoclimate research and education. Computers Geosciences,127: 12-22.
|
[64] |
Li Q, Jian Z, Li B. 2004. Oligocene-Miocene planktonic foraminifer biostratigraphy,Site 1148,northern South China Sea. Proceedings of the Ocean Drilling Program Scientific Results,184: 1-26.
|
[65] |
Lisiecki L E, Stern J V. 2016. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography, 31(10): 1368-1394.
|
[66] |
Liu J, Shi J, Lu Y, Fan X, Zhang Z, Zhang R, Wang Z, Xu K, Xiao A, Kemp D B, Huang C. 2024. Astronomical forcing of terrestrial organic carbon burial in East Asia during the Eocene. Earth and Planetary Science Letters,646: 119014.
|
[67] |
Ma Y, Fan M, Lu Y, Liu H, Hao Y, Xie Z, Liu Z, Peng L, Du X, Hu H. 2016. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: constraints from lithofacies and geochemical studies in the Zhanhua Depression,eastern China. International Journal of Coal Geology,167: 103-118.
|
[68] |
Maher K, Chamberlain C. 2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178): 1502-1504.
|
[69] |
Mann M E, Lees J M. 1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33(3): 409-445.
|
[70] |
Mao S, Li J, Qin X, Wu G, Harland R. 2007. Dinoflagellate cysts and environmental evolution of the Oligocene to Lower Miocene at site 1148,Odp Leg 184,South China Sea. Palynology, 31(1): 37-52.
|
[71] |
McCoy J, Gibson M E, Hocking E P, O’Keefe J M, Riding J B, Roberts R, Campbell S, Abbott G D, Pound M J. 2024. Temperate to tropical palaeoclimates on the northwest margin of Europe during the middle Cenozoic. Palaeontologia Electronica, 27(1): 1-66.
|
[72] |
Milankovitch M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy Special Publication,133: 1-633.
|
[73] |
Niu L, Gao Y, Huang H, Tian X, Dong T, Yang Q, Cao X, Wang C. 2021. Controlling factors for organic carbon burial in the Late Cretaceous Nenjiang Formation of the Songliao Basin,NE China. Energies, 14(16): 4783.
|
[74] |
Ogg J. 2020. Geomagnetic Polarity Time Scale. In: Geologic Time Scale 2020. Amsterdam, Netherlands: Elsevier, 159-192.
|
[75] |
Ogi M, Rigor I G, McPhee M G, Wallace J M. 2008. Summer retreat of Arctic sea ice: role of summer winds. Geophysical Research Letters, 35(24): 701.
|
[76] |
Peng C, Zou C, Zhang S, Shu J, Wang C. 2024. Geophysical logs as proxies for cyclostratigraphy: sensitivity evaluation,proxy selection,and paleoclimatic interpretation. Earth-Science Reviews: 104735.
|
[77] |
Rohling E J, Yu J, Heslop D, Foster G L, Opdyke B, Roberts A P. 2021. Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years. Science Advances, 7(26): eabf5326.
|
[78] |
Ruhl M, Deenen M, Abels H, Bonis N, Krijgsman W, Kürschner W. 2010. Astronomical constraints on the duration of the early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction. Earth and Planetary Science Letters, 295(1-2): 262-276.
|
[79] |
Speijer R, Pälike H, Hollis C, Hooker J, Ogg J. 2020. The Paleogene Period. In: Geologic Time Scale 2020: 1087-1140.
|
[80] |
Thomson D J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9): 1055-1096.
|
[81] |
Wen Z, Hua Y, Li X, Yi Y. 2010. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429.
|
[82] |
Westerhold T, Marwan N, Drury A J, Liebrand D, Agnini C, Anagnostou E, Barnet J S K, Bohaty S M, De Vleeschouwer D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Zachos J C. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369(6509): 1383-1387.
|
[83] |
Wu G, Qin J, Mao S. 2003. Deep-water Oligocene pollen record from South China Sea. Chinese Science Bulletin,48: 2511-2515.
|
[84] |
Wu Z C, Shi J Y, Fan T L, Jiang M. 2024. Sedimentary paleoenvironment and its control on organic matter enrichment in the Mesoproterozoic hydrocarbon source rocks in the Ordos Basin,southern margin of the North China Craton. Petroleum Science, 21(4): 2257-2272.
|
[85] |
Xu J, Jiang J, Wang D, Xu P, Wang F, Li H, Cheng X, Wu Q, Cheng F, Lin L, Xu Y. 2024a. Main controlling factors evolution on high-quality source rocks development in the Shanan Sag,Bohaibay Basin, NE China: implication from structure,depositional environment,and organic matter. Journal of Asian Earth Sciences,263: 106020.
|
[86] |
Xu Q, Zhu Y, Chen S, Liu Y, George S C. 2024b. Organic matter accumulation as a convergence response to astronomical forcing: insights from Milankovitch periods and sea-level fluctuations during the early Cambrian. Marine and Petroleum Geology,163: 106812.
|
[87] |
Yang H, Tang W, Xu E, Zhang S, Wang Y, Xu M. 2024. Cyclostratigraphy and paleoclimate analysis of the Lingshui Formation in Changchang Sag,Qiongdongnan Basin,China. Energy Geoscience, 5(1): 100224.
|
[88] |
Zeng W, Wang B, Chen X, Fu G, Zhang Z, Huang Z. 2024. Geochemical characteristics and formation mechanism of organic-rich source rocks of mixed sedimentary strata in continental saline lacustrine basin: a case study of Permian Pingdiquan formation in the Shishugou Sag, Junggar Basin,Northwest China. International Journal of Coal Geology,287: 104508.
|
[89] |
Zhang Q, Fu X, Wang J, Mansour A, Wei H, Zhang T, Wang M. 2024. Orbitally-paced climate change during the Carnian Pluvial Episode. Earth and Planetary Science Letters,626: 118546.
|
[90] |
Zhang Z, Licht A, De Vleeschouwer D, Wang Z, Li Y, Kemp D B, Tan L, Zhang R, Qiang X, Huang C. 2022. East Asian monsoonal climate sensitivity changed in the late Pliocene in response to Northern Hemisphere glaciations. Geophysical Research Letters, 49(23): e2022GL101280.
|
[91] |
Zhu G, Zhang Z, Jiang H, Yan L, Chen W, Li T, Li X. 2023. Evolution of the Cryogenian cratonic basins in China,paleo-oceanic environment and hydrocarbon generation mechanism of ancient source rocks,and exploration potential in 10000 m-deep strata. Earth-Science Reviews,244: 104506.
|