| [1] |
陈科洛, 张廷山, 梁兴, 张朝, 王高成. 2018. 滇黔北坳陷五峰组—龙马溪组下段页岩岩相与沉积环境. 沉积学报, 39(4): 743-755.
|
|
[Chen K L, Zhang T S, Liang X, Zhang C, Wang G C. 2018. Analysis of shale lithofacies and sedimentary environment on Wufeng Formation-Lower Longmaxi Formation in Dianqianbei Depression. Acta Sedimentologica Sinica, 39(4): 743-755]
|
| [2] |
董大忠, 施振生, 孙莎莎, 郭长敏, 张晨晨, 郭雯, 管全中, 张梦琪, 蒋珊, 张磊夫, 马超, 武瑾, 李宁, 昌燕. 2018. 黑色页岩微裂缝发育控制因素: 以长宁双河剖面五峰组—龙马溪组为例. 石油勘探与开发, 45(5): 763-774.
doi: 10.11698/PED.2018.05.02
|
|
[Dong D Z, Shi Z S, Sun S S, Guo C M, Zhang C C, Guo W, Guan Q Z, Zhang M Q, Jiang S, Zhang L F, Ma C, Wu J, Li N, Chang Y. 2018. Factors controlling microfractures in black shale: a case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile,Changning area,Sichuan Basin,SW China. Petroleum Exploration and Development, 45(5): 763-774]
|
| [3] |
郭彤楼. 2016. 中国式页岩气关键地质问题与成藏富集主控因素. 石油勘探与开发, 43(3): 317-326.
doi: 10.11698/PED.2016.03.01
|
|
[Guo T L. 2016. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Petroleum Exploration and Development, 43(3): 317-326]
doi: 10.11698/PED.2016.03.01
|
| [4] |
李新景, 吕宗刚, 董大忠, 程克鹏. 2009. 北美页岩气资源形成的地质条件. 天然气工业, 29(5): 27-32.
|
|
[Li X J, Lü Z G, Dong D Z, Cheng K P. 2009. Geologic controls on accumulation of shale gas in North America. Natural Gas Industry, 29(5): 27-32]
|
| [5] |
刘树根, 李智武, 孙玮, 邓宾, 罗志立, 王国芝, 雍自权, 黄文明. 2011. 四川含油气叠合盆地基本特征. 地质科学, 46(1): 233-257.
|
|
[Liu S G, Li Z W, Sun W, Deng B, Luo Z L, Wang G Z, Yong Z Q, Huang W M. 2011. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin,China. Chinese Journal of Geology, 46(1): 233-257]
|
| [6] |
贾国东, 彭平安, 傅家谟. 2002. 珠江口百年来富营养化加剧的沉积记录. 第四纪研究, 22(2): 158-165.
|
|
[Jia G D, Peng P A, Fu J M. 2002. Sedimentary records of accelerated eutrophication for the last 100 years at the peral river estuary. Quaternary Science, 22(2): 158-165]
|
| [7] |
梁兴, 叶熙, 张介辉, 舒红林. 2011. 滇黔北坳陷威信凹陷页岩气成藏条件分析与有利区. 石油勘探与开发, 38(6): 693-699.
|
|
[Liang X, Ye X, Zhang J H, Shu H L. 2011. Reservoir forming conditions and favorable exploration zones of shale gas in the Wexin sag, Dianqianbei Depression. Petroleum Exploration and Development, 38(6): 693-699]
doi: 10.1016/S1876-3804(12)60004-4
URL
|
| [8] |
梁兴, 张廷山, 舒红林, 闵华军, 张朝, 张磊. 2020. 滇黔北昭通示范区龙马溪组页岩气资源潜力评价. 中国地质, 47(1): 72-87.
|
|
[Liang X, Zhang T S, Shu H L, Min H J, Zhang Z, Zhang L. 2020. Evaluation of shale gas resource potential of Longmaxi Formation in Zhaotong national shale gas demonstration area in the northern part of Dianqianbei depression. Geology in China, 47(1): 72-87]
|
| [9] |
梁兴, 单长安, 张朝, 徐政语, 徐进宾, 王维旭, 张介辉, 徐云俊. 2021. 昭通太阳背斜山地浅层页岩气“三维封存体系”富集成藏模式. 地质学报, 95(11): 3380-3399.
|
|
[Liang X, Shan C A, Zhang Z, Xu Z Y, Xu J B, Wang W X, Zhang J H, Xu Y J. 2021. “Three-dimensional closed system”accumulation model of Taiyang anticline mountain shallow shale gas in Zhaotong demonstration area. Acta Geologica Sinica, 95(11): 3380-3399]
|
| [10] |
卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 2018. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系. 地学前缘, 25(4): 226-236.
doi: 10.13745/j.esf.yx.2017-5-5
|
|
[Lu L F, Qin J Z, Shen B J, Tenger, Liu W X, Zhang Q Z. 2018. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi Formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment. Earth Science Frontiers, 25(4): 226-236]
|
| [11] |
施振生, 邱振, 董大忠, 卢斌, 梁萍萍, 张梦琪. 2018. 四川盆地巫溪 2 井龙马溪组含气页岩细粒沉积纹层特征. 石油勘探与开发, 45(2): 339-348.
doi: 10.11698/PED.2018.02.18
|
|
[Shi Z S, Qiu Z, Dong D Z, Lu B, Liang P P, Zhang M Q. 2018. Laminae characteristics of gas-bearing shale fine-grained sediment of the Silurian Longmaxi Formation of Well Wuxi 2 in Sichuan Basin,SW China. Petroleum Exploration and Development, 45(2): 339-348]
|
| [12] |
施振生, 董大忠, 王红岩, 孙莎莎, 武瑾. 2020. 含气页岩不同纹层及组合储集层特征差异性及其成因: 以四川盆地下志留统龙马溪组一段典型井为例. 石油勘探与开发, 47(4): 829-840.
doi: 10.11698/PED.2020.04.20
|
|
[Shi Z S, Dong D Z, Wang H Y, Sun S S, Wu J. 2020. Reservoir characteristics and genetic mechanisms of gas-bearing shales with different laminae and laminae combinations: a case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin,SW China. Petroleum Exploration and Development, 47(4): 829-840]
|
| [13] |
施振生, 武瑾, 董大忠, 孙莎莎, 郭长敏, 李贵中. 2021. 四川盆地五峰组—龙马溪组重点井含气页岩孔隙类型与孔径分布. 地学前缘, 28(1): 249-260.
doi: 10.13745/j.esf.sf.2020.5.23
|
|
[Shi Z S, Wu J, Dong D Z, Sun S S, Guo C M, Li G Z. 2021. Pore types and pore size distribution of the typical Wufeng-Longmachi shale wells in the Sichuan Basin,China. Earth Science Frontiers, 28(1): 249-260]
|
| [14] |
施振生, 赵圣贤, 赵群, 孙莎莎, 周天琪, 程峰, 施少军, 武瑾. 2022. 川南地区下古生界五峰组—龙马溪组含气页岩岩心裂缝特征及其页岩气意义. 石油与天然气地质, 43(5): 1087-1101.
|
|
[Shi Z S, Zhao S X, Zhao Q, Sun S S, Zhou T Q, Cheng F, Shi S J, Wu J. 2022. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration. Oil & Gas Geology, 43(5): 1087-1101]
|
| [15] |
施振生, 王红岩, 赵圣贤, 周天琪, 赵群, 祁灵. 2023. 川南地区上奥陶统—下志留统五峰组—龙马溪组快速海进页岩特征及有机质分布. 古地理学报, 25(4): 788-805.
doi: 10.7605/gdlxb.2023.04.065
|
|
[Shi Z S, Wang H Y, Zhao S X, Zhou T Q, Zhao Q, Qi L. 2023. Rapid transgressive shale characteristics and organic matter distribution of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in southern Sichuan Basin,China. Journal of Palaeogeography(Chinese Edition), 25(4): 788-805]
|
| [16] |
赵建华, 金之钧, 金振奎, 温馨, 耿一凯, 颜彩娜. 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究. 天然气地球科学, 27(2): 377-386.
doi: 10.11764/j.issn.16721926.2016.02.0377
|
|
[Zhao J H, Jin Z J, Jin Z K, Wen X, Geng Y K, Yan C N. 2016. The genesis of quartz in Wufeng-Longmaxi gas shales,Sichuan Basin. Natural Gas Geoscience, 27(2): 377-386]
|
| [17] |
邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 2017. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学, 28(12): 1781-1796.
doi: 10.11764/j.issn.1672-1926.2017.11.018
|
|
[Zou C N, Zhao Q, Dong D Z, Yang Z, Qiu Z, Liang F, Wang N, Huang Y, Duan A X, Zhang Q, Hu Z M. 2017. Geological characteristics,main challenges and future prospect of shale gas. Natural Gas Geoscience, 28(12): 1781-1796]
|
| [18] |
Brenchley P J, Marshall J D, Carden G, Robertson D B R, Long D G F, Meidla T, Hints L, Anderson T F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22(4): 295-298.
doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2
URL
|
| [19] |
Chen L, Jiang S, Chen P, Chen X, Zhang B, Zhang G, Lin W, Lu Y. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area,China. Marine and Petroleum Geology,124: 104809.
|
| [20] |
Calvert S E. 1987. Oceanographic controls on the accumulation of organic matter in marine sediments.Geological Society, London,Special Publications, 26(1): 137-151.
|
| [21] |
Hu Y, Sun W, Ding X, Wang F, Ling M, Liu J. 2009. Volcanic event at the Ordovician-Silurian boundary: the message from K-bentonite of Yangtze Block. Acta Petrologica Sinica, 25(12): 3298-3308.
|
| [22] |
Huisman J Jonker R R, Zonneveld C, Weissing F J. 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology, 80(1): 211-222.
doi: 10.1890/0012-9658(1999)080[0211:CFLBPS]2.0.CO;2
URL
|
| [23] |
Heckel P H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. AAPG Bulletin, 61(7): 1045-1068.
|
| [24] |
Jr. Coveney R M, Watney. W L, Maples. C G. 1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology, 19(2): 147-150.
doi: 10.1130/0091-7613(1991)019<0147:CDMFPB>2.3.CO;2
URL
|
| [25] |
Li Y, Zhang T, Ellis G, Shao D. 2017. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform,South China. Palaeogeography,Palaeoclimatology, Palaeoecology,466: 252-264.
|
| [26] |
Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(60): 1071-1098.
doi: 10.1306/08171111061
URL
|
| [27] |
Middelburg J J, Calvert S E, Karlin R. 1991. Organic-rich transitional facies in silled basins: response to sea-level change. Geology, 19(7): 679-682.
doi: 10.1130/0091-7613(1991)019<0679:ORTFIS>2.3.CO;2
URL
|
| [28] |
Oschmann W. 1988. Kimmeridge clay sedimentation: a new cyclic model. Palaeogeography,Palaeoclimatology,Palaeoecology, 65(3-4): 217-251.
doi: 10.1016/0031-0182(88)90025-9
URL
|
| [29] |
Qiu Z, Zou C. 2020. Controlling factors on the formation and distribution of“sweet-spot areas”of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology. Journal of Asian Earth Sciences,194: 103989.
|
| [30] |
Rong J Y, Harper D A T, Huang B, Li R Y, Zhang X L, Chen D. 2020. The latest Ordovician Hirnantian brachiopod faunas: new global insights. Earth-Science Reviews,208: 103280.
|
| [31] |
Shi Z, Wang H, Sun S, Guo C. 2021. Graptolite zone calibrated stratigraphy and topography of the late Ordovician-early Silurian Wufeng Lungmachi shale in Upper Yangtze area,South China.Arabian Journal of Geosciences,14: 213.
|
| [32] |
Shi Z, Zhao S, Zhou T, Ding L, Sun S, Cheng F. 2022a. Mineralogy and geochemistry of the Upper Ordovician and Lower Silurian WufengLongmaxi shale on the Yangtze Platform,south China: implications for provenance analysis and shale gas sweet-spot interval. Minerals, 12(10): 1190.
doi: 10.3390/min12101190
URL
|
| [33] |
Shi Z, Zhou T, Wang H, Sun S. 2022b. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin,China. Energies, 15(5): 1618.
doi: 10.3390/en15051618
URL
|
| [34] |
Sommer U, Lengfellner K. 2008. Climate change and the timing,magnitude,and composition of the phytoplankton spring bloom. Global Change Biology, 14(6): 1199-1208.
doi: 10.1111/gcb.2008.14.issue-6
URL
|
| [35] |
Wang G, Jin Z, Liu G, Liu Q, Liu Z, Wang H, Liang X, Jiang T, Wang R. 2020. Geological implications of gamma ray(GR)anomalies in marine shales: a case study of the Ordovician-Silurian Wufeng-Longmaxi succession in the Sichuan Basin and its periphery,Southwest China. Journal of Asian Earth Sciences,199: 104359.
|
| [36] |
Yang S, Hu W, Wang X, Jiang B, Yao S, Sun F, Huang Z, Zhu F. 2019. Duration,evolution,and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region,South China. Earth and Planetary Science Letters,518: 13-25.
|
| [37] |
Yao W, Li Z, Li W. 2014. Detrital provenance evolution of the Ediacaran-Silurian Nanhua foreland basin,South China. Gondwana Research, 28(4): 1449-1465.
doi: 10.1016/j.gr.2014.10.018
URL
|
| [38] |
Zhang L, Wang R, Chen M, Liu J, Zeng L, Xiang R, Zhang Q. 2015. Biogenic silica in surface sediments of the South China Sea: controlling factors and paleoenvironmental implications. Deep Sea Research Part Ⅱ. Topical Studies in Oceanography,122: 142-152.
|
| [39] |
Zhang T, Shen Y, Algeo T. 2010. High-resolution carbon isotopic records from the Ordovician of South China: links to climatic cooling and the Great Ordovician Biodiversification Event(GOBE). Palaeogeography,Palaeoclimatology,Palaeoecology, 289(1-4): 102-112.
doi: 10.1016/j.palaeo.2010.02.020
URL
|
| [40] |
Zhou L, Kang Z, Wang Z, Peng Y, Xiao H. 2017. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform. Journal of Petroleum Science and Engineering,159: 376-386.
|