[1] |
蔡应雄,杨红梅,段瑞春,卢山松,张利国,刘重芃,邱啸飞. 2014. 湘西—黔东下寒武统铅锌矿床流体包裹体和硫、铅、碳同位素地球化学特征. 现代地质,28(1): 29-41.
|
|
[Cai Y X,Yang H M,Duan R C,Lu S S,Zhang L G,Liu C P,Qiu X F. 2014. Fluid inclusions and S,Pb,C isotope geochemistry of Pb-Zn deposits hosted by Lower Cambrian in Western Hunan-Eastern Guizhou Area. Geoscience,28(1): 29-41]
|
[2] |
高磊. 2019. 贵州织金寒武系磷块岩中生物的结构特征及与成磷关系分析. 贵州大学硕士学位论文,1-78.
|
|
[Gao L. 2019. Analysis of structural characteristics of creatures and their relationship with phosphorus formation in the Cambrian phosphorites,Zhijin,Guizhou. Masteral dissertation of Guizhou University,1-78]
|
[3] |
胡永亮,王伟,周传明. 2020. 沉积地层中的黄铁矿形态及同位素特征初探: 以华南埃迪卡拉纪深水相地层为例. 沉积学报,38(1): 138-149.
|
|
[Hu Y L,Wang W,Zhou C M. 2020. Morphologic and isotopic characteristics of sedimentary pyrite: a case study from deepwater facies,Ediacaran Lantian Formation in South China. Acta Sedimentologica Sinica,38(1): 138-149]
|
[4] |
刘大卫,蔡春芳,扈永杰,姜磊,王石,彭燕燕,李映涛,李寒敖. 2023. 基于共生金属硫化物硫同位素分馏程度约束热液活动温度: 以川中下寒武统龙王庙组为例. 古地理学报,25(1): 215-225.
|
|
[Liu D W,Cai C F,Hu Y J,Jiang L,Wang S,Peng Y Y,Li Y T,Li H A. 2023. Hydrothermal activity temperature constrained by fractionation degree of sulfur isotope in symbiotic metal sulfide: a case study of the Lower Cambrian Longwangmiao Formation in central Sichuan Basin,China. Journal of Palaeogeography(Chinese Edition),25(1): 215-225]
|
[5] |
卢正伟,唐玄,张同伟,王玉芳,张家政,孟庆强,马子杰,何燚,邵德勇. 2021. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义. 石油实验地质,43(4): 599-610.
|
|
[Lu Z W,Tang X,Zhang T W,Wang Y F,Zhang J.,Meng Q Q,Ma Z J,He,Y,Shao D Y. 2021. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region. Petroleum Geology and Experiment,43(4): 599-610]
|
[6] |
罗泰义,张欢,李晓彪,朱丹. 2003. 遵义牛蹄塘组黑色岩系中多元素富集层的主要矿化特征. 矿物学报,23(4): 296-302.
|
|
[Luo T,Zhang H,Li X,Zhu D. 2003. Mineralization characteristics of the multi-element-rich strata in the Niutitang Formation black shale series,Zunyi,Guizhou,China. Acta Mineralogica Sinica,23(4): 296-302]
|
[7] |
毛铁,杨瑞东. 2013. 贵州织金寒武系磷块岩中的小壳动物化石微结构特征及成分研究. 微体古生物学报,30(2): 199-207.
|
|
[Mao T,Yang R D. 2013. Micro-structural characteristics and composition of the small shelly fossils in Cambrian phosphorites,Zhijin,Guizhou. Acta Micropalaeontologica Sinica,30(2): 199-207]
|
[8] |
门玉澎,闫剑飞,戚明辉,熊国庆,马龙,杨菲,康建威. 2020. 黔南地区下寒武统牛蹄塘组页岩气顶底板特征研究. 沉积与特提斯地质,40(1): 53-59.
|
|
[Men Y P,Yan J F,Qi M H,Xiong G Q,Ma L,Yang F,Kang J W. 2020. Effects of bottom and top layers of Niutitang Formation on preservation of shale gas in southern Guizhou. Sedimentary Geology and Tethyan Geology,40(1): 53-59]
|
[9] |
施春华,曹剑,胡凯,边立曾,韩善楚,姚素平. 2013. 黑色岩系矿床成因及其海水、热水与生物有机成矿作用. 地学前缘,20(1): 19-31.
|
|
[Shi C H,Cao J,Hu K,Bian L Z,Han S C,Yao S P. 2013. A review of origins of mineral deposits hosted in black rock series and the mineralization functions of their sea water,hydrothermal fluid and bio-organics. Earth Science Frontiers,20(1): 19-31]
|
[10] |
史淼,张金川,袁野,王锡伟,陶隆凤. 2023. 贵州岑巩地区牛蹄塘组地层黄铁矿特征及其对页岩气的指示意义. 岩石学报,39(5): 1529-1540.
|
|
[Shi M,Zhang J C,Yuan Y,Wang X W,Tao L F. 2023. Pyrite characteristics and shale gas significance of the Niutitang Formation in Cengong area,Guizhou Province. Acta Petrologica Sinica,39(5): 1529-1540]
|
[11] |
徐林刚,孙凯,闫浩,闫鹏,付雪瑞. 2022. 黑色页岩容矿型Ni-Co矿床: 研究进展与展望. 岩石学报,38(10): 3052-3066.
|
|
[Xu L G,Sun K,Yan H,Yuan P,Fu X R. 2022. Black shale-hosted nickel-cobalt deposit: current understanding and outlook to future prospecting. Acta Petrologica Sinica,38(10): 3052-3066]
|
[12] |
杨兴莲,朱茂炎,赵元龙,张俊明,郭庆军,李丙霞. 2007. 黔东前寒武纪—寒武纪转换时期微量元素地球化学特征研究. 地质学报,81(10): 1391-1397.
|
|
[Yang X L,Zhu M Y,Zhao Y L,Zhang J M,Guo Q J,Li B X. 2007. Trace element geochemical characteristics from the Ediacaran Cambrian transition interval in eastern Guizhou,South China. Acta Geologica Sinica,81(10): 1391-1397]
|
[13] |
杨兴莲,朱茂炎,赵元龙,张俊明,郭庆军,皮道会. 2008. 黔东震旦系—下寒武统黑色岩系稀土元素地球化学特征. 地质论评,54(1): 3-15.
|
|
[Yang X L,Zhu M Y,Zhao Y L,Zhang J M,Guo Q J,Pi D H. 2008. REE geochemical characteristics of the Ediacaran-Lower Cambrian black rock series in eastern Guizhou. Geological Review,54(1): 3-15]
|
[14] |
杨兴莲,赵元龙,朱茂炎,崔滔,杨凯迪. 2010. 贵州丹寨寒武系牛蹄塘组海绵动物化石及其环境背景. 古生物学报,49(3): 348-359.
|
|
[Yang X L, Zhao Y L, Zhu M Y, Cui T, Yang K D. 2010. Sponges from the early Cambrian Niutitang Formation at Danzhai, Guizhou and their environmental background. Acta Palaeontologica Sinica, 49(3): 348-369]
|
[15] |
张银国,陈清华,陈建文,龚建明,吴漱玉,王建强. 2016. 下扬子海相中—古生界烃源岩发育的控制因素. 海洋地质前沿,32(1): 8-12.
|
|
[Zhang Y G,Chen Q H,Chen J W,Gong J M,Wu S Y,Wang J Q. 2016. Controlling factors on the Mesozoic-Paleozoic marine source rocks in the Lower Yangtze Platform. Marine Geology Frontiers,32(1): 8-12]
|
[16] |
周明忠,罗泰义,李正祥,赵辉,龙汉生,杨勇. 2008. 遵义牛蹄塘组底部凝灰岩锆石SHRIMP U-Pb年龄及其地质意义. 科学通报,53(1): 104-110.
|
|
[Zhou M Z,Luo T Y,Li Z X,Zhao H,Long H S,Yang Y. 2008. U-Pb age of zircon from tuff of the bottom Niutitang Formation,Zunyi,and its geological significance. Science Bulletin,53(1): 104-110]
|
[17] |
周锡强,遇昊,黄泰誉,张力钰,张恭境,付勇,陈代钊. 2016. 重晶石沉积类型及成因评述: 兼论扬子地区下寒武统重晶石的富集机制. 沉积学报,34(6): 1044-1056.
|
|
[Zhou X Q,Yu H,Huang T Y,Zhang L Y,Zhang G J,Fu Y,Chen D Z. 2016. Genetic classification of sedimentary barites and discussion on the origin of the Lower Cambrian barite-rich deposits in the Yangtze Block,South China. Acta Sedimentologica Sinica,34(6): 1044-1056]
|
[18] |
Bradley A S,Leavitt W D,Schmidt M,Knoll A H,Girguis P R,Johnston D T. 2016. Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology,14: 91-101.
|
[19] |
Brasier M D. 1992. Background to the Cambrian Explosion. Journal of Geological Society,149: 585-587.
|
[20] |
Canfield D E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Science,33: 1-36.
|
[21] |
Cao J,Hu K,Zhou J,Shi C,Bian L,Yao S. 2013. Organic clots and their differential accumulation of Ni and Mo within early Cambrian black-shale-hosted polymetallic Ni-Mo deposits,Zunyi,South China. Journal of Asian Earth Sciences,62: 531-536.
|
[22] |
Chandra A P,Gerson A R. 2010. The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surface Science Reports,65: 293-315.
|
[23] |
Chen L,Chen K,Bao Z,Liang P,Sun T,Yuan H. 2017. Preparation of standards for in-situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry,32: 107-116.
|
[24] |
Chen L,Yuan H,Chen,K,Bao Z,Zhu L,Liang P. 2019. In-situ sulfur isotope analysis by laser ablation MC-ICPMS and a case study of the Erlihe Zn-Pb ore deposit,Qinling orogenic belt,Central China. Journal of Asian Earth Sciences,176: 325-336.
|
[25] |
Chen X, Ling H F, Vance D, Shields-Zhou G A, Zhu M Y, Poulton S M, Och L M,Jiang, S Y, Li D, Cremonese L, Archer C. 2015. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nature Communications,doi: 10.1038/ncomms8142.
|
[26] |
Coveney Jr R M,Chen N S. 1991. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States. Mineralium Deposita,26: 83-88.
|
[27] |
Dong L H,Wei W,Xu L,Lin Y B,Liu Z R,Pan S,Jing Z,Huang F. 2024. Vanadium isotope evidence for seawater contribution to V enrichment/mineralization in early Cambrian metalliferous black shales. Science Bulletin,69: 1006-1010.
|
[28] |
Dong Z G,Peng Z D,Robbins,L J,Konhauser K O,Zhang B L,Zhang L C,Li J,Li W J,Zhang L,Wang C L. 2023. Episodic ventilation of euxinic bottom waters triggers the formation of black shale-hosted Mn carbonate deposits. Geochimica et Cosmochimica Acta,341: 132-149.
|
[29] |
Emsbo P,Seal R R,Breit G N,Diehl S F,Shah A K. 2016. Sedimentary exhalative(Sedex)zinc-lead-silver deposit model. Reston,VA: U.S. Geological Survey Scientific Investigations Report 2010-5070-C: 1-345.
|
[30] |
Erwin D H,Laflamme M,Tweedt S M,Sperling E A,Pisani D,Peterson K J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science,334: 1091-1097.
|
[31] |
Fan H,Zhang H,Xiao C,Pašava J,Han T,Zhou T,Wen H. 2020. Large Zn isotope variations in the Ni-Mo polymetallic sulfide layer in the lower Cambrian,South China. Gondwana Research,85: 224-236.
|
[32] |
Fan H,Ostrander C M,Auro M,Wen H,Nielsen S G. 2021. Vanadium isotope evidence for expansive ocean euxinia during the appearance of early Ediacara biota. Earth and Planetary Science Letters,567: 117007.
|
[33] |
Fike D A,Bradley A S,Rose C V. 2015. Rethinking the ancient sulfur cycle. Annual Reviews of Earth and Planetary Sciences,43: 593-622.
|
[34] |
Han T,Zhu X,Li K,Jiang L,Zhao C,Wang Z. 2015. Metal sources for the polymetallic Ni-Mo-PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation,South China. Ore Geology Reviews,67: 158-169.
|
[35] |
Han T,Fan H F,Zhu X Q,Wen H J,Zhao C H,Xiao F. 2017. Submarine hydrothermal contribution for the extreme element accumulation during the Early Cambrian South China. Ore Geology Reviews,86: 297-308.
|
[36] |
Han T,Fan H F,Wen H J,Mo B,Murowchick J B,Lu Z T,Algeo T J. 2020. Petrography and sulfur isotopic compositions of SEDEX ores in the early Cambrian Nanhua Basin,South China. Precambrian Research,345: 105757.
|
[37] |
Han T,Peng Y B,Bao H M. 2022. Sulfate-limited euxinic seawater facilitated Paleozoic massively bedded barite deposition. Earth and Planetary Science Letters,582: 117419.
|
[38] |
Jiang S Y,Yang J H,Ling H F,Chen Y Q,Feng H Z,Zhao K D,Ni P. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeography,Palaeoclimatology,Palaeoecology,254: 217-228.
|
[39] |
Jiang S Y,Pi D H,Heubeck C,Frimmel H,Liu Y P,Deng H L,Ling H F,Yang J H. 2009. Early Cambrian ocean anoxia in South China. Nature,459: E5-E6.
|
[40] |
Jin W,Kang M,Kang Y,She J,Qin D,Wu H,Wu K,Chen C,Liu H. 2024. Kinetics study on the temperature-dependent reduction of aqueous U(Ⅵ)by natural pyrite. Geochimica et Cosmochimica Acta,380: 18-30.
|
[41] |
Kao L S,Peacor D R,Coveney R M,Zhao G M,Dungey K E,Curtis M D,Penner-Hahn J E. 2001. A C/MoS2 mixed-layer phase(MoSC)occurring in metalliferous black shales from southern China,and new data on jordisite. American Mineralogist,86: 852-861.
|
[42] |
Lehmann B,Mao J W,Li S R,Zhang G D. 2003. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geological significance-reply. Economic Geology,98: 663-665.
|
[43] |
Lehmann B,Nägler T F,Holland H D,Wille,M,Mao J W,Pan J Y,Ma D S,Dulski P. 2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology,35: 403-406.
|
[44] |
Lehmann B,Frei R,Xu L G,Mao J W. 2016. Early Cambrian black shale-hosted Ni-Mo and V mineralization on the rifted margin of the Yangtze Platform,China: Reconnaissance chromium isotope data and a refined metallogenic model. Economic Geology,111: 89-103.
|
[45] |
Lehmann B,Pašava,J,Šebek O,Andronikov A,Frei R,Xu L,Mao J. 2022. Early Cambrian highly metalliferous black shale in South China: Cu and Zn isotopes and a short review of other non-traditional stable isotopes. Mineralium Deposita,57: 1167-1187.
|
[46] |
Li Z X,Li X H,Zhou H W,Kinny P D. 2002. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,30: 163-166.
|
[47] |
Li Z X,Evans D A,Halverson G P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology,294: 219-232.
|
[48] |
Li Z,Zhang M,Chen Z Q,Algeo T J,Zhao L,Zhang F. 2021. Early Cambrian oceanic oxygenation and evolution of early animals: a critical review from the South China Craton. Global and Planetary Change,204: 103561.
|
[49] |
Liu Z R,Zhou M F. 2017. Meishucun phosphorite succession(SW China)records redox changes of the early Cambrian ocean. Geological Society of America Bulletin,129(11-12): 1554-1567.
|
[50] |
Liu Z R,Zhou M F. 2020. Early Cambrian ocean mixing recorded by phosphorite successions in the Nanhua Basin,South China. Precambrian Research,349: 105414.
|
[51] |
Magnall J M,Glesson S A,Hayward N,Rocholl A. 2020. Massive sulfide Zn deposits in the Proterozoic did not require euxinia. Geochemical Perspective Letters,13: 19-24.
|
[52] |
Mao J,Lehmann B,Du A,Zhang G,Ma D,Wang Y,Zeng M,Kerrich R. 2002. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Economic Geology,97: 1051-1061.
|
[53] |
Pašava J,Kříbek B,Vymazalová A,Sýkorová I,Žák K,Orberger B. 2008. Multiple sources of metals of mineralization in Lower Cambrian black shales of South China: Evidence from geochemical and petrographic study. Resource Geology,58: 25-42.
|
[54] |
Pi D H,Liu C Q,Shields Zhou G A,Jiang S Y. 2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou Province,South China: constraints for redox environments and origin of metal enrichments. Precambrian Research,225: 218-229.
|
[55] |
Qiu W J,Zhou M F,Li X C,Huang F,Malpas J. 2021. Constraints of Fe-S-C stable isotopes on hydrothermal and microbial activities during formation of sediment-hosted stratiform sulfide deposits. Geochimica et Cosmochimica Acta,313: 195-213.
|
[56] |
Seal II R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry,61: 633-677.
|
[57] |
Steiner M,Li G X,Qian Y,Zhu M Y,Erdtmann B D. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform(China). Palaeogeography,Palaeoclimatology,Palaeoecology,254: 67-99.
|
[58] |
Strauss H,Banerjee D M,Kumar V. 2001. The sulfur isotope composition of Neoproterozoic to early Cambrian seawater: evidence from the cyclic Hanseran evaporites,NW India. Chemical Geology,175: 17-28.
|
[59] |
Wang L,Lin S,Xiao W. 2023,Yangtze and Cathaysia blocks of South China: their separate positions in Gondwana until early Paleozoic juxtaposition. Geology,51: 723-727.
|
[60] |
Wang X,Shi X,Jiang G,Zhang W. 2012. New U-Pb age from the basal Niutitang Formation in South China: implications for diachronous development and condensation of stratigraphic units across the Yangtze platform at the Ediacaran-Cambrian transition. Journal of Asian Earth Sciences,48: 1-8.
|
[61] |
Wei W,Dong L H,Xiao S,Lin Y B,Xu L,Wei G Y,Wang W,Tian L L,Wei H Z,Huang F. 2024. Seawater barium and sulfide removal improved marine habitability for the Cambrian Explosion of early animals. National Science Review,11: nwae237.
|
[62] |
Wen H,Fan H,Zhang Y,Cloquet C,Carignan J. 2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochimica et Cosmochimica Acta,164: 1-16.
|
[63] |
Wignall P B,Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science,298: 537-552.
|
[64] |
Wilkin R T,Barnes H L,Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmochimica Acta,60: 3897-3912.
|
[65] |
Wu T,Yang R D,Gao J B,Li J. 2021. Age of the Lower Cambrian vanadium deposit,east Guizhou,South China: evidences from age of tuff and carbon isotope analysis along the Bagong section. Open Geosciences,13: 999-1012.
|
[66] |
Xu L G,Mao J W. 2021. Trace element and C-S-Fe geochemistry of Early Cambrian black shales and associated polymetallic Ni-Mo sulfide and vanadium mineralization,South China: implications for paleoceanic redox variation. Ore Geology Reviews,135: 104210.
|
[67] |
Xu L G,Lehmann B,Mao J W,Qu W J,Du A D. 2011. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: a reassessment. Economic Geology,106: 511-522.
|
[68] |
Xu L G,Lehmann B,Mao J W. 2013. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope,PGE,trace element,and REE geochemistry. Ore Geology Reviews,52: 66-84.
|
[69] |
Xu L G,Frank A,Frei R,Wang G W,Yuan P,Fu X R,Lehmann B. 2024a. Oxidative weathering on the continent and seawater upwelling along the passive continental margin promoted widespread phosphorite formation at the Neoproterozoic-Cambrian boundary in South China. Chemical Geology,670: 122418.
|
[70] |
Xu L G,Lehmann B,Weyer S,Wen H J,Mao J W,Neubert N,Jian W. 2024b. Inverse Mo versus U isotope correlation of Early Cambrian highly metalliferous black shales in South China indicates synsedimentary metal enrichment from a near-modern ocean. Mineralium Deposita,59: 155-167.
|
[71] |
Ye M F,Li X H,Li W X,Liu Y,Li X. 2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research,12: 144-156.
|
[72] |
Yin R,Xu L,Lehmann B,Lepak R F,Hurley J P,Mao J,Feng X,Hu R. 2017. Anomalous mercury enrichment in Early Cambrian black shales of South China: mercury isotopes indicate a seawater source. Chemical Geology,467: 159-167.
|
[73] |
Yuan H,Liu X,Chen L,Bao Z,Chen K,Zong C,Li X,Qiu J W. 2018. Simultaneous measurement of sulfur and lead isotopes in sulfides using nano-second laser ablation coupled with two multi-collector inductively coupled plasma mass spectrometers. Journal of Asian Earth Sciences,154: 386-396.
|
[74] |
Zhang X,Shu D. 2021. Current understanding on the Cambrian Explosion: questions and answers. PaIZ,95: 641-660.
|
[75] |
Zhu G,Li T,Huang T,Zhao K,Tang W,Wang R,Lang X,Shen B. 2021. Quantifying the seawater sulfate concentration in the Cambrian ocean. Frontiers in Earth Science,9: 767857.
|
[76] |
Zhu M Y,Zhang J M,Steiner M,Yang A H,Li G X,Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: an integrated approach. Progress in Natural Science,13: 951-960.
|
[77] |
Zhu M Y,Zhang J M,Yang A H. 2007. Integrated Ediacaran(Sinian)chronostratigraphy of South China. Palaeogeography,Palaeoclimatology,Palaeoecology,254: 7-61.
|