[1] 纪友亮,李清山,王勇,胡斌. 2012. 高邮凹陷古近系戴南组扇三角洲沉积体系及其沉积相模式. 地球科学与环境学报,34(1): 9-19. [Ji Y L,Li Q S,Wang Y,Hu B.2012. Fan delta sedimentary system and facies models of Dainan Formation of Paleogene in Gaoyou sag. Journal of Earth Sciences and Environment,34(1): 9-19] [2] 纪友亮,吴胜和,周勇,商超,卢欢. 2013. 河北滦平东杨树沟剖面砂岩中的发散状层理及其成因探讨. 古地理学报,15(1): 43-48. [Ji Y L,Wu S H,Zhou Y,Shang C,Lu H.2013. Radiational bedding in sandstone and analysis of its origin in Dongyangshugou section of Luanping,Hebei Province. Journal of Palaeogeography(Chinese Edition),15(1): 43-48] [3] 李佩贤,柳永清,田树刚. 2004. 冀北滦平盆地侏罗系—白垩系岩石地层研究新进展. 地质通报,23(8): 757-765. [Li P X,Liu Y Q,Tian S G.2004. Advances in the study of the Jurassic-Cretaceous lithostratigraphy in the Luanping Basin,northern Hebei. Geological Bulletin of China,23(8): 757-765] [4] 孟庆任. 2017. 中国东部燕山期沉积盆地演化与资源效应. 矿物岩石地球化学通报,36(4): 567-569. [Meng Q R.2017. Development of sedimentary basins in eastern China during the Yanshanian Period. Bulletin of Mineralogy,Petrology and Geochemistry,36(4): 567-569] [5] 牛宝贵,和政军,宋彪,任纪舜. 2003. 张家口组火山岩SHRIMP定年及其重大意义. 地质通报,22(2): 140-141. [Niu B G,He Z J,Song B,Ren J S.2003. SHRIMP dating of the Zhangjiakou formation volcanic rocks and implications. Geological Bulletin of China,22(2): 140-141] [6] 石占中,纪友亮. 2002. 湖平面频繁变化环境下的扇三角洲沉积. 西安石油学院学报,17(1): 24-27. [Shi Z J,Ji Y L.2022. Fan-delta sedimentation formed under the environment of lake level frequently varying: taking the First Member of Kongdian Formation,Huanghua Depression as an example. Journal of Xi'an Petroleum Institute(Natural Science Edition),17(1): 24-27] [7] 唐勇,徐洋,李亚哲,王力宝. 2018. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义. 新疆石油地质,39(1): 16-22. [Tang Y,Xu Y,Li Y Z,Wang L B.2018. Sedimentation model and exploration significance of large scaled shallow retrogradation fan delta in Mahu sag. Xinjiang Petroleum Geology,39(1): 16-22] [8] 田树刚,牛绍武,庞其清. 2008. 冀北滦平盆地早白垩世陆相义县阶的重新厘定及其层型剖面. 地质通报,27(6): 739-752. [Tian S G,Niu S W,Pang Q Q.2008. Redefinition of the Lower Cretaceous terrestrial Yixianian Stage and its stratotype candidate in the Luanping basin,northern Hebei,China. Geological Bulletin of China,27(6): 739-752] [9] 王成,姜在兴,孔祥鑫,张元福,张建国,袁晓冬,刘晓宁. 2022. 滦平盆地西瓜园组中段厚层砾岩沉积特征及成因机制研究: 来自滦页1井全井段连续取心的证据. 地学前缘,29(3): 340-355. [Wang C,Jiang Z X,Kong X X,Zhang Y F,Zhang J G,Yuan X D,Liu X N.2022. Sedimentary characteristics and genesis of thick conglomerate in the middle section of Xiguayuan Formation,Luanping Basin: insight from a consecutive coring study of well LY1. Earth Science Frontiers,29(3): 340-355] [10] 王思恩. 1990. 热河动物群的起源、演化与机制. 地质学报,64(4): 350-360. [Wang S E.1990. Origin,evolution and mechanism of the Jehol Fauna. Acta Geologica Sinica,64(4): 350-360] [11] 武法东,陈永进,侯宇安,张峰,李寅. 2004. 滦平盆地沉积-构造演化及高精度层序地层特征. 地球科学: 中国地质大学学报,29(5): 625-630. [Wu F D,Chen Y J,Hou Y A,Zhang F,Li Y.2004. Characteristics of sedimentary-tectonic evolution and high-resolution sequence stratigraphy in Luanping Basin. Earth Science: Journal of China University of Geosciences,29(5): 625-630] [12] 薛良清,Galloway W E.1991. 扇三角洲、辫状三角洲与三角洲体系的分类. 地质学报,65(2): 141-153. [Xue L Q,Galloway W E.1991. Fan delta,braid delta and the classification of delta systems. Acta Geologica Sinica,65(2): 141-153] [13] 张可,吴胜和,许允杰,熊绮聪,高子杰,余季陶. 2022. 湖盆扇三角洲河口坝发育程度及粒度韵律特征: 以滦平盆地桑园剖面下白垩统西瓜园组为例. 古地理学报,24(3): 415-432. [Zhang K,Wu S H,Xu Y J,Xiong Q C,Gao Z J,Yu J T.2022. Sedimentary characteristics of mouth bar within lacustrine fan delta: insights from the Lower Cretaceous Xiguayuan Formation of Sangyuan outcrop,Luanping Basin. Journal of Palaeogeography(Chinese Edition),24(3): 415-432] [14] 张英利,渠洪杰,孟庆任. 2007. 燕山构造带滦平早白垩世盆地沉积过程和演化. 岩石学报,23(3): 667-678. [Zhang Y L,Qu H J,Meng Q R.2007. Depositional process and evolution of Luanping Early Cretaceous basin in the Yanshan structural belt. Acta Petrologica Sinica,23(3): 667-678] [15] 赵健龙,张元福,袁晓冬,霍艳翠,葛鹏程,蔡曦曜. 2023. 深源物质对滦平盆地白垩系西瓜园组古环境及油气成藏的影响. 古地理学报,25(6): 1394-1406. [Zhao J L,Zhang Y F,Yuan X D,Huo Y C,Ge P C,Cai X Y.2023. Effects of deep source materials on palaeoenvironment and hydrocarbon accumulation in the Cretaceous Xiguayuan Formation,Luanping Basin. Journal of Palaeogeography(Chinese Edition),25(6): 1394-1406] [16] Blair T C,Bilodeau W L.1988. Development of tectonic cyclothems in rift,pull-apart,and foreland basins: sedimentary response to episodic tectonism. Geology,16(6): 517-520. [17] Blair T C.1999a. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan,Death Valley,California. Sedimentology,6(5): 913-940. [18] Blair T C.1999b. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan,Death Valley,California. Sedimentology,46(5): 941-965. [19] Cain S A,Mountney N P.2009. Spatial and temporal evolution of a terminal fluvial fan system: the Permian Organ Rock Formation,South-east Utah,USA. Sedimentology,56(6): 1774-1800. [20] Cartigny M J B,Eggenhuisen J T,Hansen E W M,Postma G.2013. Concentration-dependent flow stratification in experimental high-density turbidity currents and their relevance to turbidite facies models. Journal of Sedimentary Research,83(12): 1047-1065. [21] Cartigny M J B,Ventra D,Postma G,van Den Berg J H.2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments. Sedimentology,61(3): 712-748. [22] Cope T,Ping L,Xingyang Z,Xuanjie Z,Jinmin S,Gang Z,Shultz M R.2010. Structural controls on facies distribution in a small half-graben basin: Luanping basin,northeast China. Basin Research,22(1): 33-44. [23] de Haas T,Braat L,Leuven J R,Lokhorst I R,Kleinhans M G.2015. Effects of debris flow composition on runout,depositional mechanisms,and deposit morphology in laboratory experiments. Journal of Geophysical Research: Earth Surface,120(9): 1949-1972. [24] DeCelles P G,Gray M B,Ridgway K D,Cole R B,Pivnik D A,Pequera N,Srivastava P.1991. Controls on synorogenic alluvial-fan architecture,Beartooth Conglomerate(Paleocene),Wyoming and Montana. Sedimentology,38(4): 567-590. [25] Ethridge F G,Wescott W A.1984. Tectonic setting,recognition and hydrocarbon reservoir potential of fan-delta deposits. In: Koster E H,Steel R J(eds.). Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists,Memoir 10: 217-235. [26] Fisher R V.1971. Features of coarse-grained,high-concentration fluids and their deposits. Journal of Sedimentary Research,41(4): 916-927. [27] Gao C,Ji Y,Wu C,Jin J,Ren Y,Yang Z,Liu D,Huan Z,Duan X,Zhou Y.2020. Facies and depositional model of alluvial fan dominated by episodic flood events in arid conditions: an example from the Quaternary poplar fan,North-Western China. Sedimentology,67(4): 1750-1796. [28] Hampton M.1975. Competence of fine-grained debris flows. Journal of Sedimentary Research,45(4): 834-844. [29] Hartley A J.1993. Sedimentological response of an alluvial system to source area tectonism: the Seilao Member of the Late Cretaceous to Eocene Purilactis Formation of northern Chile. In: Marzo M,Puigdefábregas C(eds). Alluvial Sedimentation. Wiley: 489-500. [30] Harvey A M.1996. The role of alluvial fans in the mountain fluvial systems of southeast Spain: implications of climatic change. Earth Surface Processes and Landforms,21(6): 543-553. [31] Harvey A M.2002. The role of base-level change in the dissection of alluvial fans: case studies from southeast Spain and Nevada. Geomorphology,45(1-2): 67-87. [32] Heifetz E,Agnon A,Marco S.2005. Soft sediment deformation by Kelvin Helmholtz Instability: a case from Dead Sea earthquakes. Earth and Planetary Science Letters,236(1-2): 497-504. [33] Jo H R,Rhee C W,Chough S K.1997. Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area,Kyongsang Basin(Early Cretaceous),southeastern Korea. Sedimentary Geology,110(1-2): 51-79. [34] Leenman A S,Eaton B C,MacKenzie L G.2022. Floods on alluvial fans: Implications for reworking rates,morphology and fan hazards. Journal of Geophysical Research: Earth Surface,127(2): e2021JF006367. [35] Lowe D R.1982. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology,52(1): 279-297. [36] Major J J.1997. Depositional processes in large-scale debris-flow experiments. The Journal of Geology,105(3): 345-366. [37] Martin A J.2000. Flaser and wavy bedding in ephemeral streams: a modern and an ancient example. Sedimentary Geology,136(1-2): 1-5. [38] Meng Q R.2003. What drove late Mesozoic extension of the northern China-Mongolia tract?Tectonophysics,369(3-4): 155-174. [39] Meng Q R,Zhou Z H,Zhu R X,Xu Y G,Guo Z T.2022. Cretaceous basin evolution in northeast Asia: tectonic responses to the paleo-Pacific plate subduction. National Science Review,9(1): nwab088. [40] Miall A D.1977. A review of the braided-river depositional environment. Earth-Science Reviews,13(1): 1-62. [41] Miller K L,Kim W,McElroy B.2019. Laboratory investigation on effects of flood intermittency on fan delta dynamics. Journal of Geophysical Research: Earth Surface,124(2): 383-399. [42] Mutti E,Tinterri R,Benevelli G,Biase D D,Cavanna G.2003. Deltaic,mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology,20(6-8): 733-755. [43] Nemec W,Steel R J.1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster E H,Steel R J(eds). Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists,Memoir 10: 1-31. [44] Nemec W,Steel R J.1988. What is a fan delta and how do we recognize it. In: Nemec W,Steel R J(eds). Fan Deltas: Sedimentology and Tectonic Settings. Blackie: 231-248. [45] Nemec W,Steel R J,Porebski S J,Spinnangr A.1984. Domba conglomerate,Devonian,Norway: process and lateral variability in a mass flow-dominated,lacustrine fan-delta. In: Koster E H,Steel R J(eds). Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists,Memoir 10: 295-320. [46] Nicholas A P,Sambrook Smith G H,Amsler M L,Ashworth P J,Best J L,Hardy R J,Szupiany R N.2016. The role of discharge variability in determining alluvial stratigraphy. Geology,44(1): 3-6. [47] Ogiwara H,Ito M.2011. Origin and internal organization of widespread composite soft-sediment deformation units in a deep-water forearc basin: the lower Pleistocene Kazusa Group on the Boso Peninsula,Japan. Sedimentary Geology,237(3-4): 209-221. [48] Ono K,Plink-Björklund P,Eggenhuisen J T,Cartigny M J.2021. Froude supercritical flow processes and sedimentary structures: new insights from experiments with a wide range of grain sizes. Sedimentology,68(4): 1328-1357. [49] Owen G,Moretti M.2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235(3-4): 141-147. [50] Pierson T C,Scott K M.1985. Downstream dilution of a lahar: transition from debris flow to hyperconcentrated streamflow. Water Resources Research,21(10): 1511-1524. [51] Sohn Y K.1997. On traction-carpet sedimentation. Journal of Sedimentary Research,67(3): 502-509. [52] Strozyk F,Huhn K,Strasser M,Krastel S,Kock I,Kopf A.2009. New evidence for massive gravitational mass-transport deposits in the southern Cretan Sea,eastern Mediterranean. Marine Geology,263(1-4): 97-107. [53] Tan C,Plink-BjÖrklund P.2021. Morphodynamics of supercritical flow in a linked river and delta system,Daihai Lake,Northern China. Sedimentology,68(4): 1606-1639. [54] Tan C,Plink-BjÖrklund P.2024. Centimeter-scale sedimentary structures in a lacustrine delta front,northern China: ripples or froude supercritical-flow bedforms?Sedimentary Geology,467: 106667. [55] Todd S P.1989. Stream-driven,high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation,SW Ireland and some theoretical considerations of their origin. Sedimentology,36(4): 513-530. [56] Tunbridge I P.1984. Facies model for a sandy ephemeral stream and clay playa complex: the Middle Devonian Trentishoe Formation of North Devon,UK. Sedimentology,31(5): 697-715. [57] Wei H H,Meng Q R,Wu G L,Li L.2012. Multiple controls on rift basin sedimentation in volcanic settings: insights from the anatomy of a small Early Cretaceous basin in the Yanshan belt,northern North China. AAPG Bulletin,124(3-4): 380-399. [58] Wetzler N,Marco S,Heifetz E.2010. Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology,38(4): 303-306. [59] Yan D,Xu H,Xu Z,Lei Z,Tian M,Cheng L,Ma Y,Wang Z,Ostadhassan M.2020. Sedimentary architecture of hyperpycnal flow deposits: Cretaceous Sangyuan outcrop,from the Luanping Basin,North East China. Marine Petroleum Geology,121: 104593. [60] Zhang K,Wu S H,Wang H H,Mi Z R,Qu J H,Wang Z K,Wang H N.2023. Sedimentary architecture of shallow-water fan-delta front in a lacustrine basin: Sangyuan section of Lower Cretaceous Xiguayuan Formation,Luanping Basin,northeast China. Swiss Journal of Geosciences,116: 3. |