[1] 曹硕. 2020. 中国东部晚白垩世风成沉积盆山型沙漠体系. 中国地质大学(北京)博士学位论文. [Cao S.2020. Late Cretaceous aeolian deposits in Eastern China: the intermountain erg system. Doctoral dissertation of China University of Geosciences(Beijing)] [2] 陈留勤,李鹏程,郭福生,刘鑫,李馨敏. 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29. [Chen L Q,Li P C,Guo F S,Liu X,Li X M.2019. Facies analysis and paleoclimate implications of the Late Cretaceous Danxia Formation in the Danxia Basin,northern Guangdong Province,South China. Acta Sedimentologica Sinica, 37(1): 17-29] [3] 陈丕基. 1997. 晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化. 地层学杂志, 21(3): 203-213. [Chen P J.1997. Coastal mountains of SE China,desertization and saliniferous lakes of central China during the Upper Cretaceous. Journal of Stratigraphy, 21(3): 203-213] [4] 黄乐清,黄建中,罗来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义. 沉积学报, 37(4): 735-748. [Huang L Q,Huang J Z,Luo L,Wang X H,Liu Y R,Liang E Y,Ma H Y.2019. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin,Hunan,and its paleoenvironmental significance. Acta Sedimentologica Sinica, 37(4): 735-748] [5] 黄乐清,吴驰华,周丽芸,金妮,彭世良,胡能勇,杨长明,陈杰. 2023. 湖南郴州丹霞地貌景观特征、成因及演化探讨. 现代地质, 37(6): 1680-1694. [Huang L Q,Wu C H,Zhou L Y,Jin N,Peng S L,Hu N Y,Yang C M,Chen J.2023. New perspectives of the features,formation,and evolution of the special Danxia landscape in Chenzhou,Hunan. Geoscience, 37(6): 1680-1694] [6] 湖南省地质调查院. 2017. 中国区域地质志·湖南志. 北京: 地质出版社,1-300. [Hunan Institute of Geological Survey. 2017. Regional Geology of China: Hunan Province. Beijing: Geological Publishing House,1-300] [7] 李建华,董树文,赵国春,张岳桥,辛宇佳,王金铭,卢运可. 2024. 华南晚中生代大陆变形、深部过程及动力学. 地质学报, 98(3): 829-861. [Li J H,Dong S W,Zhao G C,Zhang Y Q,Xin Y J,Wang J M,Lu Y K.2024. Late Mesozoic continental deformation,deep processes,and geodynamic evolution of South China. Acta Geologica Sinica, 98(3): 829-861] [8] 刘林玉. 2003. 焉耆中生代原型盆地沉积特征与盆地边界的确定. 西北大学博士学位论文. [Liu L Y.2003. Sedimentary characteristics of the Yanqi prototype basin in Mesozoic Era and the determination of the basin boundaries. Doctoral dissertation of Northwest University] [9] 罗霖炎,高鑫,赵永成. 2023. 新月形沙丘表面流场特征. 中国沙漠, 43(4): 41-54. [Luo L Y,Gao X,Zhao Y C.2023. The surface flow pattern characteristics of barchan dunes. Journal of Desert Research, 43(4): 41-54] [10] 沈尚峰. 2008. 江汉盆地江陵凹陷的构造格架和演化. 中国地质大学(北京)硕士学位论文. [Sheng S F.2008. Tectonic framework and evolution of Jiangling Depression in Jianghan Basin. Masteral dissertation of China University of Geosciences(Beijing)] [11] 石宇翔,吴驰华,黄乐清,伊海生,李智武,焦海菁,杨嘉宝,秦江颖,张小凤,周亚楠,Juan Pedro Rodriguez-López.2023. 华南衡阳盆地上白垩统黄土类似物的初步研究. 地质学报, 97(9): 3101-3115. [Shi Y X,Wu C H,Huang L Q,Yi H S,Li Z W,Jiao H J,Yang J B,Qin J Y,Zhang X F,Zhou Y N,Rodriguez-López J P.2023. Preliminary study of Late Cretaceous loess-like sediments in the Hengyang Basin,South China. Acta Geologica Sinica, 97(9): 3101-3115] [12] 汤海磊,梁瑞,伊海生,李高杰. 2022. 楚雄盆地白垩纪晚期盐湖风成砂微观组构特征研究. 矿产综合利用,43(1): 57-70. [Tang H L,Liang R,Yi H S,Li G J.2022. Study on the microstructure characteristics of Late Cretaceous aeolian sand in the playa from Chuxiong Basin. Multipurpose Utilization of Mineral Resources,43(1): 57-70] [13] 吴学洪,徐亚东,许笑玮,张黎渊,何妍. 2023. 湘东南茶永盆地白垩纪—古近纪沉积古地理演化. 华南地质, 39(2): 214-234. [Wu X H,Xu Y D,Xu X W,Zhang L Y,He Y.2023. Cretaceous-Paleogene paleogeographic evolution of the Chaling-Yongxing Basin in southeastern Hunan Province. South China Geology, 39(2): 214-234] [14] 许欢,柳永清,旷红伟,彭楠,丁家翔,杜研,苑婷媛. 2023. 古风成沉积理论体系与研究进展. 沉积学报, 41(6): 1681-1713. [Xu H,Liu Y Q,Kuang H W,Peng N,Ding J X,Du Y,Yuan T Y.2023. Theoretical system and research progress of eolian deposits. Acta Sedimentologica Sinica, 41(6): 1681-1713] [15] 杨军怀. 2019. 塔克拉玛干沙漠沙丘移动研究. 陕西师范大学硕士学位论文. [Yang J H.2019. A study of dune movement in the Taklamakan Desert. Masteral dissertation of Shaanxi Normal University] [16] 朱筱敏,陈贺贺,谈明轩,李顺利,秦祎,杨棵. 2023. 从太平洋到喜马拉雅的沉积学新航程: 21届国际沉积学大会研究热点分析. 沉积学报, 41(1): 126-149. [Zhu X M,Chen H H,Tan M X,Li S L,Qin Y,Yang K.2023. A new journey in sedimentology from the Pacific to the Himalayas: analysis of research hotpots from the 2lst International Sedimentological Congress. Acta Sedimentologica Sinica, 41(1): 126-149] [17] Bállico M B,Scherer C M S,Mountney N P,Souza E G,Reis A D,Raja Gabaglia G P,Magalhães A J C.2017a. Sedimentary cycles in a Mesoproterozoic aeolian erg-margin succession: Mangabeira Formation,Espinhaço Supergroup,Brazil. Sedimentary Geology, 349: 1-14. [18] Bállico M B,Scherer C M S,Mountney N P,Souza E G,Chemale F,Pisarevsky S A,Reis A D.2017b. Wind-pattern circulation as a palaeogeographic indicator: case study of the 1.5-1.6 Ga Mangabeira Formation,São Francisco Craton,Northeast Brazil. Precambrian Research, 298: 1-15. [19] Bigarella J J.1972. Eolian environments: their characteristics,recognition,and importance. In: Rigby J K,Hamblin W K(eds). Recognition of Ancient Sedimentary Environments. SEPM Society for Sedimentary Geology. [20] Bristow C S,Skelly R L,Ethridge F G.1999. Crevasse splays from the rapidly aggrading,sand-bed,braided Niobrara River,Nebraska: effect of base-level rise. Sedimentology, 46: 1029-1047. [21] Bryant R.2010. Deserts and desert environments. The Geographical Journal, 176(1): 119. [22] Cao S,Zhang L M,Wang C S,Ma J,Tan J,Zhang Z H.2020. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in Southeast China during the Late Cretaceous. GSA Bulletin, 132: 2475-2488. [23] Cao S,Ma J,Wang C.2023a. The sedimentological characteristics of the intermontane desert system in the Jurong Basin,South China and its relationship with the Late Cretaceous hot climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 623: 111618. [24] Cao S,Ma J,Zhang L M.2023b. Quantitative reconstruction of Early Cretaceous dune morphology in the Ordos paleo-desert and its paleoclimatic implications. Frontiers in Earth Science, 11: 1142034. [25] Cao S,Zhang L M,Mountney N P,Ma J,Hao M G,Wang C S.2023c. Ultra-long-distance transport of aeolian sand: the provenance of an intermontane desert,south-east China. Sedimentology, 70(7): 2108-2126. [26] Chen Y,Meng J,Liu H,Wang C S,Tang M,Liu T,Zhao Y N.2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 34(2): 688-701. [27] Chu Y,Lin W,Faure M,Allen M B,Feng Z T.2020. Cretaceous exhumation of the Triassic intracontinental Xuefengshan Belt: delayed unroofing of an orogenic plateau across the South China Block?Tectonophysics, 793: 228592. [28] Cosgrove G I E,Colombera L,Mountney N P.2021. Quantitative analysis of the sedimentary architecture of eolian successions developed under icehouse and greenhouse climatic conditions. GSA Bulletin, 133: 2625-2644. [29] Cosgrove G I E,Colombera L,Mountney N P.2023a. Quantitative analysis of aeolian stratigraphic architectures preserved in different tectonic settings. Earth-Science Reviews, 237: 104293. [30] Cosgrove G I E,Colombera L,Mountney N P,Basilici G,Mesquita Á F,Soares M V.2023b. Precambrian aeolian systems: a unique record?Precambrian Research, 392: 107075. [31] Crouvi O,Amit R,Enzel Y,Porat N,Sandler A.2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert,Israel. Quaternary Research,70: 275-282. [32] Dong S W,Li J H,Gao R,Cawood P A,Thybo H,Johnston S T,Jiao L Q,Zhang Y Q,Wang J M.2023. Intraplate lithospheric extension revealed by seismic reflection profiling of South China. Earth and Planetary Science Letters, 609: 118100. [33] Folk R L,Ward W C.1957. A study in the significance of grain size parameters. Journal of Sedimentary Petrology,27: 3-26. [34] Hasegawa H,Imsamut S,Charusiri P,Tada R,Horiuchi Y,Hisada K I.2010. ‘Thailand was a desert' during the mid-Cretaceous: equatorward shift of the subtropical high-pressure belt indicated by eolian deposits(Phu Thok Formation)in the Khorat Basin,northeastern Thailand: Thailand was a desert in the mid-Cretaceous. Island Arc, 19: 605-621. [35] Hasegawa H,Tada R,Jiang X,Suganuma Y,Imsamut S,Charusiri P,Ichinnorov N,Khand Y.2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Climate of the Past, 8: 1323-1337. [36] Hay W W.2011. Can humans force a return to a‘Cretaceous' climate?Sedimentary Geology, 235: 5-26. [37] Hême de Lacotte V J P,Mountney N P.2022. A classification scheme for sedimentary architectures arising from aeolian-fluvial system interactions: Permian examples from southeast Utah,USA. Aeolian Research, 58: 100815. [38] Howell J,Mountney N.2001. Aeolian grain flow architecture: hard data for reservoir models and implications for red bed sequence stratigraphy. Petroleum Geoscience, 7: 51-56. [39] Jiao H J,Wu C H,Rodríguez-López J P,Sun X M,Yi H S.2020. Late Cretaceous plateau deserts in the South China Block,and Quaternary analogues: sedimentology,dune reconstruction and wind-water interactions. Marine and Petroleum Geology, 120: 104504. [40] Jones F H,dos Santos Scherer C M,Kifumbi C.2021. Aeolian dunes morphodynamics and wind regime reconstruction in mid-latitudes of the Gondwana during Early Permian,Aracaré Formation,Sergipe-Alagoas Basin,Brazil. Aeolian Research, 50: 100672. [41] Kifumbi C,dos Santos Scherer C M,Dalla Lana Michel R,dos Reis A D,Guadagnin F,de Souza E G,Ferronatto J P F,Jones F H.2023. Spatial and temporal variation in the evolution of ancient aeolian dune-field, the Pennsylvanian Piauí Formation(Parnaíba Basin),Brazil. Sedimentary Geology, 451: 106398. [42] Kocurek G.1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 28: 753-780. [43] Kocurek G,Nielson J.1986. Conditions favourable for the formation of warm-climate aeolian sand sheets. Sedimentology, 33: 795-816. [44] Kocurek G,Day M.2018. What is preserved in the aeolian rock record?a Jurassic Entrada sandstone case study at the Utah-Arizona border. Sedimentology, 65: 1301-1321. [45] Lancaster N,Mountney N P.2021. Eolian processes and sediments. In: Encyclopedia of Geology. Amsterdam: Elsevier,809-829. [46] Li J H,Zhang Y Q,Dong S W,Johnston S T.2014. Cretaceous tectonic evolution of South China: a preliminary synthesis. Earth-Science Reviews, 134: 98-136. [47] Liang P,Yang X P.2023. Grain shape evolution of sand-sized sediments during transport from mountains to dune fields. Journal of Geophysical Research: Earth Surface, 128: e2022JF006930. [48] Mesquita Á F,Basilici G,Soares M V T,Janočko J,Mountney N P,Colombera L,de Souza Filho C R.2021. Hybrid dry-wet interdune deposition in Precambrian aeolian systems: Galho do Miguel Formation,SE Brazil. Sedimentary Geology, 425: 106007. [49] Mountney N P.2004. Feature: the sedimentary signature of deserts and their response to environmental change. Geology Today, 20: 101-106. [50] Mountney N P.2006. Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone,White Canyon,southern Utah,USA. Sedimentology, 53: 789-823. [51] Mountney N P.2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions: modelling aeolian dune-interdune architecture. Sedimentology, 59: 964-989. [52] Mountney N,Howell J.2000. Aeolian architecture,bedform climbing and preservation space in the Cretaceous Etjo Formation,NW Namibia. Sedimentology, 47: 825-849. [53] Mountney N P,Thompson D B.2002. Stratigraphic evolution and preservation of aeolian dune and damp/wet interdune strata: an example from the Triassic Helsby Sandstone Formation,Cheshire Basin,UK. Sedimentology, 49: 805-833. [54] Mountney N P,Russell A J.2009. Aeolian dune-field development in a water table-controlled system: Skeidarársandur,Southern Iceland. Sedimentology, 56: 2107-2131. [55] Mountney N,Howell J,Flint S,Jerram D.1999. Climate,sediment supply and tectonics as controls on the deposition and preservation of the aeolian-fluvial Etjo Sandstone Formation,Namibia. Journal of the Geological Society, 156: 771-777. [56] Paterson G A,Heslop D.2015. New methods for unmixing sediment grain size data. Geochemistry,Geophysics,Geosystems, 16: 4494-4506. [57] Postma G.1990. Depositional architecture and facies of river and fan deltas: a synthesis. In: Coarse-Grained Deltas(1st ed). Wiley: 13-27. [58] Pulvertaft T C R.1985. Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala sandstone,Sweden. Sedimentary Geology, 44: 93-111. [59] Rodríguez-López J P,Wu C H.2020. Recurrent deformations of aeolian desert dunes in the Cretaceous of the South China Block: trigger mechanisms variability and implications for aeolian reservoirs. Marine and Petroleum Geology, 119: 104483. [60] Rodríguez-López J P,Meléndez N,De Boer P L,Soria A R.2012. Controls on marine-erg margin cycle variability: aeolian-marine interaction in the mid-Cretaceous Iberian Desert System,Spain: aeolian-marine interaction in the mid-Cretaceous Iberian Desert System,Spain. Sedimentology, 59: 466-501. [61] Rodríguez-López J P,Clemmensen L B,Lancaster N,Mountney N P,Veiga G D.2014. Archean to recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology, 61: 1487-1534. [62] Romain H G,Mountney N P.2014. Reconstruction of three-dimensional eolian dune architecture from one-dimensional core data through adoption of analog data from outcrop. AAPG Bulletin, 98(1): 1-22. [63] Rubin M,Hunter R E.1983. Reconstructing bedform assemblages from compound crossbedding. Developments in Sedimentology, 38: 407-427. [64] Rubin D M,Carter C L.1987. Cross-Bedding,Bedforms,and Paleocurrents. SEPM Society for Sedimentary Geology. [65] Sun Z M,Yang Z Y,Yang T,Pei J L,Yu Q F.2006. New Late Cretaceous and Paleogene paleomagnetic results from South China and their geodynamic implications. Journal of Geophysical Research-Solid Earth,111(B3): B03101. [66] Suo Y H,Li S Z,Jin C,Zhang Y,Zhou J,Li X Y,Wang P C,Liu Z,Wang X Y,Somerville I.2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. Earth-Science Reviews, 196: 102884. [67] Tang S L,Yan D P,Qiu L,Gao J F,Wang C L.2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?Gondwana Research, 25: 1644-1659. [68] Vandenberghe J,Sun Y,Wang X,Abels H A,Liu X.2018. Grain-size characterization of reworked fine-grained aeolian deposits. Earth-Science Reviews, 177: 43-52. [69] Wu C H,Rodríguez-López J P.2021. Cryospheric processes in Quaternary and Cretaceous hyper-arid plateau desert oases. Sedimentology, 68: 755-770. [70] Wu C H,Liu C L,Yi H S,Xia G Q,Zhang H,Wang L C,Li G J,Wagreich M.2017. Mid-Cretaceous desert system in the Simao Basin,southwestern China,and its implications for sea-level change during a greenhouse climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 468: 529-544. [71] Wu C H,Rodríguez-López J P,Liu C L,Sun X M,Wang J Y,Xia G Q,Wagreich M.2018. Late Cretaceous climbing erg systems in the western Xinjiang Basin: palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation. Marine and Petroleum Geology, 93: 539-552. [72] Wu C H,Rodríguez-López J P,Santosh M.2022. Plateau archives of lithosphere dynamics,cryosphere and paleoclimate: the formation of Cretaceous desert basins in east Asia. Geoscience Frontiers, 13: 101454. [73] Wu C H,Sun X M,Li G W,Huang L Q,Jiao H J,Li Z W,Jian X,Mason C C,Rodríguez-López J P.2023. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia. GSA Bulletin, 136(5-6): 1863-1877. [74] Xu H,Liu Y Q,Kuang H W,Peng N.2019. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation,Ningwu-Jingle Basin,Shanxi Province,China. Journal of Asian Earth Sciences, 174: 245-262. [75] Yu X C,Liu C L,Wang C L,Li F,Wang J Y.2020. Eolian deposits of the northern margin of the South China(Jianghan Basin): reconstruction of the Late Cretaceous East Asian landscape in central China. Marine and Petroleum Geology, 117: 104390. [76] Yu X C,Liu C L,Wang C L,Wang J Y.2021a. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. Palaeogeography,Palaeoclimatology,Palaeoecology, 567: 110299. [77] Yu X C,Wang C L,Bertolini G,Liu C L,Wang J Y.2021b. Damp- to dry aeolian systems: sedimentology,climate forcing,and aeolian accumulation in the Late Cretaceous Liyou Basin,South China. Sedimentary Geology, 426: 106030. [78] Zhang J,Liu Y G,Flögel S,Zhang T,Wang C S,Fang X M.2021. Altitude of the East Asian coastal mountains and their influence on Asian climate during early Late Cretaceous. Journal of Geophysical Research(Atmospheres), 126: e2020JD034413. [79] Zhang L M,Wang C S,Cao K,Wang Q,Tan J,Gao Y.2016. High elevation of Jiaolai Basin during the Late Cretaceous: implication for the coastal mountains along the East Asian margin. Earth and Planetary Science Letters, 456: 112-123. [80] Zhang X D,Wang H M,Xu S M,Yang Z S.2020. A basic end-member model algorithm for grain-size data of marine sediments. Estuarine,Coastal and Shelf Science, 236: 106656. [81] Zheng C Y,Wang J Y,Li X H,Zhang C K.2024. Intermontane erg environment and arid climate indicated from associated eolian and alluvial fan facies during the Late Cretaceous,South China. Journal of Asian Earth Sciences, 264: 106044. [82] Zhou N,Li Q,Zhang C L,Huang C H,Wu Y B,Zhu B Q,Cen S B,Huang X Q.2021. Grain size characteristics of aeolian sands and their implications for the aeolian dynamics of dunefields within a river valley on the southern Tibet Plateau: a case study from the Yarlung Zangbo river valley. Catena, 196: 104794. |