[1] 邓旭升,余文超,杜远生,杜威,熊兴国,曾禹人,龙建喜,张晗彬,符宏斌,何犇,卢树藩,罗香建. 2023. 贵州狮溪铝土岩型锂资源的发现及意义. 地质论评, 69(1): 133-147. [Deng X S,Yu W C,Du Y S,Du W,Xiong X G,Zeng Y R,Long J X,Zhang H B,Fu H B,He B,Lu S F,Luo X J.2023. Discovery and significance of Shixi bauxitite-type lithium deposit in Guizhou Province. Geological Review, 69(1): 133-147] [2] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿床的成因分类. 古地理学报, 22(5): 812-826. [Du Y S,Yu W C.2020. Subaerial leaching process of sedimentary bauxite and the discussion on classifications of bauxite deposits. Journal of Palaeogeography(Chinese Edition), 22(5): 812-826] [3] 杜远生,周琦,金中国,凌文黎,汪小妹,余文超,崔滔,雷志远,翁申富,吴波,覃永军,曹建州,彭先红,张震,邓虎. 2014. 黔北务正道地区早二叠世铝土矿成矿模式. 古地理学报, 16(1): 1-8. [Du Y S,Zhou Q,Jin Z G,Ling W L,Wang X M,Yu W C,Cui T,Lei Z Y,Weng S F,Wu B,Qin Y J,Cao J Z,Peng X H,Zhang Z,Deng H.2014. Mineralization model for the Early Permian bauxite deposits in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(1): 1-8] [4] 杜远生,周琦,金中国. 2015. 贵州务正道地区二叠系铝土矿沉积地质学. 湖北武汉: 中国地质大学出版社,27-85. [Du Y S,Zhou Q,Jin Z G.2015. Sedimentary Geology of the Premian Bauxite Deposit in Wuchuan-Zhengan-Daozhen Area,Northern Guizhou Province. Hubei Wuhan: China University of Geoscience Press,27-85] [5] 杜远生,余文超,张亚冠. 2020. 矿产沉积学: 一个新的交叉学科方向. 古地理学报, 22(4): 601-619. [Du Y S,Yu W C,Zhang Y G.2020. Ore sedimentology: a developing interdisciplinary research direction of sedimentology. Journal of Palaeogeography(Chinese Edition), 22(4): 601-619] [6] 廖士范,梁同荣. 1991. 中国铝土矿地质学. 贵州贵阳: 贵州科技出版社. [Liao S F,Liang T R.1991. Bauxite Geology of China. Guizhou Guiyang: Guizhou Science and Technology Press] [7] 唐波,付勇,龙克树,龙珍,王天顺,刘阳,杨颖. 2021. 中国铝土矿含铝岩系伴生稀土资源分布特征及富集机制. 地质学报, 95(8): 2284-2305. [Tang B,Fu Y,Long K S,Long Z,Wang T S,Liu Y,Yang Y.2021. Distribution characteristics and enrichment mechanism of associated rare earth elements resource in aluminum-bearing rock series in bauxite deposits of China. Acta Geologica Sinica, 95(8): 2284-2305] [8] 汪小妹,焦养泉,杜远生,周琦,崔滔,计波,雷志远,翁申富,金中国,熊星. 2013. 黔北务正道地区铝土矿稀土元素地球化学特征. 地质科技情报, 32(1): 27-33. [Wang X M,Jiao Y Q,Du Y S,Zhou Q,Cui T,Ji B,Lei Z Y,Weng S F,Jin Z G,Xiong X.2013. Rare earth element geochemistry of bauxite in Wuchuan-Zheng’an-Daozhen area,northern Guizhou Province. Geological Science and Technology Information, 32(1): 27-33] [9] 杨达源. 2001. 自然地理学. 南京: 南京大学出版社. [Yang Y D.2001. Natural Geography. Nanjing: Nanjing University Press] [10] 余文超,杜远生,熊国林,周锦涛,庞大卫,邓旭升,翁申富,李沛刚. 2020. 中国铝土矿沉积中的碎屑锆石记录: 对铝土矿物源模式与矿床分类的启示. 古地理学报, 22(5): 947-964. [Yu W C,Du Y S,Xiong G L,Zhou J T,Pang D W,Deng X S,Weng S F,Li P G.2020. Detrital zircon records in bauxite deposits of China: implication for the provenance model and ore deposits classification of bauxite. Journal of Palaeogeography(Chinese Edition), 22(5): 947-964] [11] 余文超,杜远生,周锦涛,成龙,邓旭升,戴贤铎,庞大卫,翁申富,雷志远,李沛刚,陈群. 2023. 中国铝土矿成矿作用的物质来源与深时环境因素: 进展与讨论. 地质学报, 97(9): 3056-3074. [Yu W C,Du Y S,Zhou J T,Chen L,Deng X S,Dai X D,Pang D W,Weng S F,Lei Z Y,Li P G,Chen Q.2023. Provence and deep-time environmental factors for bauxitization in China: progress and discussion. Acta Geologica Sinica, 97(9): 3056-3074] [12] 翟裕生,姚书振,蔡克勤. 2011. 矿床学. 北京: 地质出版社. [Zhai Y S,Yao S Z,Cai K Q.2011. Ore Deposits. Beijing: Geological Publishing House] [13] 张甘霖,宋效东,吴克宁. 2021. 地球关键带分类方法与中国案例研究. 中国科学: 地球科学, 51(10): 1681-1692. [Zhang G L,Song X D,Wu K N.2021. Classification method of key zones of the earth and case study of China. Scientia Sinica(Terrae), 51(10): 1681-1692] [14] Bárdossy G.1982. Karst Bauxites. Amsterdam,4-6. [15] Bárdossy G,Aleva G J J.1990. Lateritic Bauxites. Elsevier,Amsterdam. [16] Bazilevskaya E,Lebedeva M,Pavich M,Rother G,Parkinson D Y,Cole D,Brantley S L.2013. Where fast weathering creates thin regolith and slow weathering creates thick regolith. Earth Surface Processes and Landforms, 38: 847-858. [17] Bland W J,Rolls D.2016. Weathering: an Introduction to the Scientific Principles. Routledge. [18] Brady N C,Weil R R.2017. The Nature and Properties of Soils,15th Edition. Pearson Press,Upper Saddle River NJ. [19] Brantley S L,Megonigal J P,Scatena F N,Balogh-Brunstad Z,Barnes R T,Bruns M A,Van Cappellen P,Dontsova K,Hartnett H E,Hartshorn A S,Heimsath A,Herndon E,Jin L,Keller C K,Leake J R,McDowell W H,Meinzer F C,Mozdzer T J,Petsch S,Pett-Ridge J,Pregitzer K S,Raymond P A,Riebe C S,Shumaker K,Sutton-Grier A,Walter R,Yoo K.2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9: 140-165. [20] Cleal C J,Thomas B A.2005. Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology, 3: 13-31. [21] Field J P,Breshears D D,Law D J,Villegas J C,López-Hoffman L,Brooks P D,Chorover J,Barron-Gafford G A,Gallery R E,Litvak M E,Lybrand R A,McIntosh J C,Meixner T,Niu G Y,Papuga S A,Pelletier J D,Rasmussen C R,Troch P A.2015. Critical zone services: expanding context,constraints,and currency beyond ecosystem services. Vadose Zone Journal, 14: vzj2014.10.0142. [22] Finlay R D,Mahmood S,Rosenstock N,Bolou-Bi E B,Köhler S J,Fahad Z,Rosling A,Wallander H,Belyazid S,Bishop K,Lian B.2020. Reviews and syntheses: biological weathering and its consequences at different spatial levels-from nanoscale to global scale. Biogeosciences, 17: 1507-1533. [23] Freyssinet P,Butt C R M,Morris R C,Piantone P.2005. Ore-forming processes related to lateritic weathering. One Hundredth Anniversary Volume. Society of Economic Geologists [24] Graham R C,Tice K R,Guertal W R.1994. The Pedologic Nature of Weathered Rock.Whole Regolith Pedology: 21-40. [25] Ivory S J,McGlue M M,Ellis G S,Lézine A M,Cohen A S,Vincens A.2014. Vegetation controls on weathering intensity during the last deglacial transition in southeast Africa. PLoS One, 9: e112855. [26] Jones D L,Nguyen C,Finlay R D.2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321: 5-33. [27] Larsen Isaac J,Andre E,Almond Peter C,Thaler Evan A,Michael R J,Günther P.2023. The influence of erosion and vegetation on soil production and chemical weathering rates in the Southern Alps,New Zealand. Earth and Planetary Science Letters,608. [28] Lei Z Y,Ling W L,Wu H,Zhang Y H,Zhang Y N.2023. Geochemistry and mineralization of the Permian bauxites with contrast bedrocks in northern Guizhou,South China. Journal of Earth Science, 34: 487-503. [29] Liu X F,Wang Q F,Zhang Q Z,Yang S J,Zhang Y,Liang Y Y,Qing C S.2017. Transformation from Permian to Quaternary bauxite in southwestern South China Block driven by superimposed orogeny: a case study from Sanhe ore deposit. Ore Geology Reviews, 90: 998-1017. [30] Liu X F,Wang Q F,Zhao L H,Peng Y B,Ma Y,Zhou Z H.2020. Metallogeny of the large-scale Carboniferous karstic bauxite in the Sanmenxia area,southern part of the North China Craton,China. Chemical Geology, 556: 119851. [31] McFarlane M J.1991. Some sedimentary aspects of lateritic weathering profile development in the major bioclimatic zones of tropical Africa. Journal of African Earth Sciences(and the Middle East), 12: 267-282. [32] Pang D W,Yu W C,Chen Q,Du Y S,Dai X Y,Xiong G L,Deng K Y,Wu B,Deng X S,Zhou J T.2023. Continental weathering led to the accumulation of Early Carboniferous bauxite deposits in the SW South China Craton. Journal of Asian Earth Sciences, 256: 105801. [33] Price G D,Valdes P J,Sellwood B W.1997. Prediction of modern bauxite occurrence: implications for climate reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 131: 1-13. [34] Skarpelis N.2006. Lateritization processes of ultramafic rocks in Cretaceous times: the fossil weathering crusts of mainland Greece. Journal of Geochemical Exploration, 88: 325-328. [35] Stallard R F.1988. Weathering and erosion in the humid tropics. In: Lerman A,Meybeck M(eds). Physical and Chemical Weathering in Geochemical Cycles. Dordrecht: Springer, 225-246. [36] Tabor N J,Myers T S.2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43: 333-361. [37] Wayne Nesbitt H,Markovics G.1997. Weathering of granodioritic crust,long-term storage of elements in weathering profiles,and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61: 1653-1670. [38] Weng S F,Yu W C,Algeo T J,Du Y S,Li P G,Lei Z Y,Zhao S.2019. Giant bauxite deposits of South China: multistage formation linked to Late Paleozoic Ice Age(LPIA)eustatic fluctuations. Ore Geology Reviews, 104: 1-13. [39] Yu F,Hunt A G.2018. Predicting soil formation on the basis of transport-limited chemical weathering. Geomorphology, 301: 21-27. [40] Yu W C,Wang R H,Zhang Q L,Du Y S,Chen Y,Liang Y P.2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi,South China: from the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88. [41] Yu W C,Algeo T J,Yan J X,Yang J H,Du Y S,Huang X,Weng S F.2019. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China. Earth-Science Reviews, 189: 159-176. [42] Zhou J T,Yu W C,Du Y S,Liu X,Wang Y H,Xiong G L,Zhao Z Y,Pang D W,Shen D X,Weng S F,Liu Z C,Chen D.2022. Provenance change and continental weathering of Late Permian bauxitic claystone in Guizhou Province,Southwest China. Journal of Geochemical Exploration, 236: 106962. |