[1] 付金华,郭正权,邓秀芹. 2005. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义. 古地理学报, 7(1): 34-44. [Fu J H,Guo Z Q,Deng X Q.2005. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 7(1): 34-44] [2] 付锁堂,邓秀芹,庞锦莲. 2010. 晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析. 沉积学报, 28(6): 1081-1089. [Fu S T,Deng X Q,Pang J L.2010. Characteristics and mechanism of thick sandbody of Yanchang Formation at the centre of Ordos Basin. Acta Sedimentologica Sinica, 28(6): 1081-1089] [3] 金杰华,操应长,王健,杨田,周磊. 2019. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征. 地质论评, 65(3): 689-702. [Jin J H,Cao Y C,Wang J,Yang T,Zhou L.2019. Deep-water sandy debris flow deposits concepts,sedimentary processes and characteristics. Geological Review, 65(3): 689-702] [4] 李存磊,任伟伟,唐明明. 2012. 流体性质转换机制在重力流沉积体系分析中应用初探. 地质论评, 58(2): 285-296. [Li C L,Ren W W,Tang M M.2012. Preliminary study on gravity flow depositional system based on fluid properties conversion theory. Geological Review, 58(2): 285-296] [5] 李相博,卫平生,刘化清,王菁. 2013. 浅谈沉积物重力流分类与深水沉积模式. 地质论评, 59(4): 607-614. [Li X B,Wei P S,Liu H Q,Wang J.2013. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model. Geological Review, 59(4): 607-614] [6] 李相博,刘化清,潘树新,王菁. 2019. 湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 904-921. [Li X B,Liu H Q,Pan S X,Wang J.2019. The past,present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 37(5): 904-921] [7] 李云,郑荣才,朱国金,胡晓庆. 2011. 沉积物重力流研究进展综述. 地球科学进展, 26(2): 157-165. [Li Y,Zheng R C,Zhu G J,Hu X Q.2011. Reviews on sediment gravity flow. Advances in Earth Science, 26(2): 157-165] [8] 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘, 20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Su B,Hui X.2013. Sedimentary characteristics and model of gravity flow deposition in Triassic Yanchang Formation of Longdong Area in Ordos Basin. Earth Science Frontiers, 20(2): 29-39] [9] Posamentier H W,Kolla V,刘化清. 2019. 深水浊流沉积综述. 沉积学报, 37(5): 879-903. [Posamentier H W,Kolla V,Liu H Q.2019. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 37(5): 879-903] [10] 孙靖,薛晶晶,厚刚福,吴爱成,宋明星,朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式: 以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858-869. [Sun J,Xue J J,Hou G F,Wu A C,Song M X,Zhu F.2019. Sedimentary characteristic and model of sandy debris flow in depression area of lacustrine basin: A case of study of Jurassic Sangonghe Formation in the western well Pen-1 sag,Junggar basin. Journal of China University of Mining & Technology, 48(4): 858-869] [11] 谈明轩,朱筱敏,耿名扬,刘常妮. 2016. 沉积物重力流流体转化沉积—混合事件层. 沉积学报, 34(6): 1108-1119. [Tan M X,Zhu X M,Geng M Y,Liu C N.2016. The flow transforming deposits of sedimentary gravity flow-hybrid event bed. Acta Sedimentologica Sinica, 34(6): 1108-1119] [12] 王德坪. 1991. 湖相内成碎屑流的沉积及形成机理. 地质学报,(4): 299-316, 387-388. [Wang D P.1991. The sedimentation and formation mechanism lacustrine endogenic debris flow. Acta Geologica Sinica,(4): 299-316, 387-388] [13] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘, 19(1): 121-135. [Xian B Z,Wan J F,Jiang Z X,Zhang J G,Li Z P,She Y Q.2012. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case of study from Dongying Formation in Nanpu Depression. Earth Science Frontiers, 19(1): 121-135] [14] 鲜本忠,安思奇,施文华. 2014. 水下碎屑流沉积: 深水沉积研究热点与进展. 地质论评, 60(1): 39-51. [Xian B Z,An S Q,Shi W H.2014. Subaqueous debris flow: Hotspots and advances of deep-water sedimention. Geological Review, 60(1): 39-51] [15] 鲜本忠,王璐,刘建平,路智勇,李宇志,牛栓文,朱永飞,洪方浩. 2016. 东营凹陷东部始新世三角洲供给型重力流沉积特征与模式. 中国石油大学学报(自然科学版), 40(5): 10-21. [Xian B Z,Wang L,Liu J P,Lu Z Y,Li Y Z,Niu S W,Zhu Y F,Hong F H.2016. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum(Edition of Natural Sciences), 40(5): 10-21] [16] 余杰. 1983. 块状砂岩的X射线照像分析及其形成机制的探讨. 石油实验地质, 5(3): 208-213, 241. [Yu J.1983. X-Ray Radiography analysis of massive sandstone and a discussion on their genetic mechanism. Experimental Petroleum Geology, 5(3): 208-213,41] [17] 张兴阳,罗顺社,何幼斌. 2001. 沉积物重力流—深水牵引流沉积组合: 鲍马序列多解性探讨. 江汉石油学院学报, 23(1): 1-4,6. [Zhang X Y,Luo S S,He Y B.2001. Deposit assemblage of gravity flow and traction current in deep water: A study of the multiple interpretation of the bouma sequence. Journal of Jianghan Petroleum Institute, 23(1): 1-4,6] [18] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社,379. [Zhu X M. 2008. Sedimentology(4th). Beijing: Petroleum Industry Press,379] [19] 邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚. 2009. 湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. [Zou C N,Zhao Z Z,Yang H,Fu J H,Zhu R K,Yuan X J,Wang L.2009. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentologica Sinica, 27(6): 1065-1075] [20] Bouma A H.1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier,1-168. [21] Bouma A H,Devries M B,Stone C G.1997. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma: Discussion. AAPG Bulletin, 81(3): 470-472. [22] Brooks H L,Hodgson D M,Brunt R L,Peakall J,Hofstra M,Flint S S.2018. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture,an example from the Karoo Basin,South Africa. Geological Society of America, 130: 1723-1746. [23] Cartigny M J B,Postma G,Wagoner Den Berg J H,Mastbergen D R.2011. A comparative study of sediment waves and cyclic steps based on geometries,internal structures and numerical modeling. Marine Geology, 280: 40-56. [24] Dasgupta P.2003. Sediment gravity flow-the conceptual problems. Earth Science Reviews,62(3/4): 265-281. [25] Fildani A,Normark W R.2004. Late Quaternary evolution of channel and lobe complexes of Monterey Fan. Marine Geology, 206: 199-223. [26] Hampton M A.1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Petrology, 42(4): 775-793. [27] Haughton P,Davis C,Mc C W,Barker S.2009. Hybrid sediment gravity flow deposits Classification,origin and significance. Marine and Petroleum Geology, 26: 1900-1918. [28] Li X B,Yang Z L,Wang J,Liu H Q,Chen Q L,Wan Y R,Liao J B,Li Z Y.2016. Mud-coated intraclasts: A criterion for recognizing sandy mass-transport deposits—deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation,Ordos Basin,Central China. Journal of Asian Earth Sciences, 129: 98-116. [29] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2): 269-299. [30] Mutti E,Normark W R. 1987. Comparing examples of modern and ancient turbidite systems: Problems and concepts. In: Leggett J K,Zuffa G G(eds). Marine Clastic Sedimentology,Concepts and Case Studies. Oxford,UK: Graham & Trotman,1-38. [31] Mutti E,Normark W R. 1991. An integrated approach to the study of turbidite systems, In: Weimer P,Link M H(eds). Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer-Verlag,75-106. [32] Normark.1978. Fan valleys,channels,and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments. AAPG Bulletin, 62: 912-931. [33] Shanmugam G.1996. High-density turbidity currents: Are they sandy debris flows? Journal of Sedimentary Research, 66(1): 2-10. [34] Shanmugam G,Moiola R J.1997. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma: Reply. AAPG Bulletin, 81(3): 476-491. [35] Shanmugam G.2000. Deep-water processes and facies model: A critical perspective. Marine and Petroleum Geology, 17(2): 285-342. [36] Symons W O,Sumner E J,Talling P J,Cartigny M J, Clare M A.2016. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371: 130-148. [37] Talling P J,Amy I A,Wynn R B,Peakall J,Robinson M.2004. Beds comprising debrite sandwiched within cogenetic turbidite: Origin and widespread occurrence in distal depositional environments. Sedimentology, 51: 163-194. [38] Walker R G.1978. Deep-water sandstone facies and ancient submarine fans-models for exploration for stratigraphic traps. AAPG Bulletin, 62: 932-966. [39] Wynn R B,Kenyon N H,Masson D G,Stow D A,Weaver P P.2002a. Characterization and recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86: 1441-1446. [40] Wynn R B,Piper D J W, Gee M J R.2002b. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones. Marine Geology, 192: 59-78. |