[1] 曹全斌,唐鹏程,吕福亮,范国章,邵大力,鲁银涛,许小勇,陈宇航. 2018. 东非鲁伍马盆地深水浊积砂岩气藏成藏条件及控制因素. 海相油气地质, 23(3): 67-74. [Cao Q B,Tang P C,Lü F L,Fan G Z,Shao D L,Lu Y T,Xu X Y,Chen Y H. 2018. Formation conditions and controlling factors of gas-bearing turbidite sand reservoirs in deep water deposits in the Rovuma Basin,East Africa. Marine Origin Petroleum Geology, 23(3): 67-74] [2] 陈宇航,姚根顺,吕福亮,唐鹏程,鲁银涛. 2016. 东非鲁伍马盆地深水区构造-沉积演化过程及油气地质特征. 海相油气地质, 21(2): 39-46. [Chen Y H,Yao G S,Lü F L,Tang P C,Lu Y T. 2016. Tectonic-sedimentary evolution and petroleum geology characteristics in deepwater area in Rovuma Basin,East Africa. Marine Origin Petroleum Geology, 21(2): 39-46] [3] 孔祥宇. 2013. 东非鲁伍马盆地油气地质特征与勘探前景. 岩性油气藏, 25(3): 21-27. [Kong X Y. 2013. Petroleum geologic characteristics and exploration prospect in Rovuma Basin,East Africa. Lithologic Reservoirs, 25(3): 21-27] [4] 李华,王英民,徐强,卓海腾,吴嘉鹏,唐武,李冬,徐艳霞. 2014. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式. 地质学报, 88(6): 1120-1129. [Li H,Wang Y M,Xu Q,Zhuo H T,Wu J P,Tang W,Li D,Xu Y X. 2014. Interactions between down-slope and along-slope processes on the northern slope of South China Sea: products,processes,and depositional model. Acta Geologica Sinica, 88(6): 1120-1129] [5] 林煜,吴胜和,王星,路瑶,万琼华,张佳佳,张义楷. 2013. 深水浊积水道体系构型模式研究: 以西非尼日尔三角洲盆地某深水研究区为例. 地质论评, 59(3): 510-520. [Lin Y,Wu S H,Wang X,Lu Y,Wan Q H,Zhang J J,Zhang Y K. 2013. Research on architecture model of deepwater turbidity channel system: a case study of a deepwater research area in Niger Delta Basin,West Africa. Geological Review, 59(3): 510-520] [6] 刘飞,赵晓明,冯潇飞,葛家旺,杨莉,杨宝泉,杨希濮. 2021. 基于重力流相的深水水道分类方案研究. 古地理学报, 23(5): 951-965. [Liu F,Zhao X M,Feng X F,Ge J W,Yang L,Yang B Q,Yang X P. 2021. Research on classification of deep-water channels based on gravity flow facies. Journal of Palaeogeography(Chinese Edition), 23(5): 951-965] [7] 王敏,张佳佳,王瑞峰,徐庆岩,文思颖,曹全斌,余季陶,王黎. 2022. 鲁伍马盆地 X 气田深水海底扇储集层质量差异及主控因素分析. 石油勘探与开发, 49(3): 1-11. [Wang M,Zhang J J,Wang R F,Xu Q Y,Wen S Y,Cao Q B,Yu J T,Wang L. 2022. Quality variations and controlling factors of deepwater submarine-fan reservoirs in X gas field,Rovuma Basin,East Africa. Petroleum Exploration and Development, 49(3): 1-11] [8] 张光亚,刘小兵,赵健,温志新,张荻萩,王兆明,张磊,马锋,陈曦. 2018. 东非被动大陆边缘盆地演化及大气田形成主控因素: 以鲁武马盆地为例. 地学前缘, 25(2): 24-32. [Zhang G Y,Liu X B,Zhao J,Wen Z X,Zhang D Q,Wang Z M,Zhang L,Ma F,Chen X. 2018. Passive continental margin basin evolution of East Africa and the main controlling factors of giant gas fields: an example from the Rovuma Basin. Earth Science Frontiers, 25(2): 24-32] [9] 赵晓明,吴胜和,刘丽. 2012. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征. 石油学报, 33(6): 1049-1058. [Zhao X M,Wu S H,Liu L. 2012. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield,Niger Delta Basin. Acta Petrolei Sinica, 33(6): 1049-1058] [10] Breitzke M,Wiles E,Krocker R,Watkeys M K,Jokat W. 2017. Seafloor morphology in the Mozambique Channel: evidence for long-term persistent bottom-current flow and deep-reaching eddy activity. Marine Geophysical Research, 38(3): 241-269. [11] Cavanna G,Castoro A,Fervari. 2014. Hydrocarbon and lithology indicators by coordinate rotations in the AI-Vop/vs domain. In: 76th EAGE Conference & Exhibition 2014. June,Amsterdam RAI. The Netherlands: 16-19. [12] Chen Y H,Yao G S,Wang X F,Lü F L,Shao D L,Lu Y T,Cao Q B,Tang P C. 2020. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels: an example from the Oligocene channels in the Rovuma Basin,offshore Mozambique. Sedimentary Geology, 404: 1-13. [13] Deptuck M E,Steffens G S,Barton M,Pirmez C. 2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6-8): 649-676. [14] de Ruijter W P,Ridderinkhof H,Lutjeharms J R,Schouten M W,Veth C. 2002. Observations of the flow in the Mozambique channel. Geophysical Research Letters, 29(10): 140-1-140-3. [15] Fonnesu M,Palermob D,Galbiati M,Marchesini M,Bonamini E,Bendias D. 2020. A new world-class deep-water play-type,deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111: 179-201. [16] Fuhrmann A,Kane I A,Clare M A,Ferguson R A,Schomacker E,Bonamini E,Contreras F A. 2020. Hybrid turbidite-drift channel complexes: an integrated multiscale model. Geology, 48(6): 562-568. [17] Gong C L,Wang Y M,Zhu W L,Li W G,Xu Q. 2013. Upper Miocene to quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth basin,northern South China Sea. AAPG Bulletin, 97(2): 285-308. [18] Gong C L,Wang Y M,Rebesco M,Salon S,Steel R J. 2018. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels? Geology, 46(6): 551-554. [19] Labourdette R. 2007. Integrated three-dimensional modeling approach of stacked turbidite channels. AAPG Bulletin, 91(11): 1603-1618. [20] Lin Y,Wu S H,Wang X,Ling Y,Lu Y,Zhang J J,Yu Z. 2014. Composite sand bodies architecture of deep-water turbidite channels in the Niger Delta Basin. Acta Geologica Sinica, 88(6): 1822-1834. [21] Lowe D R. 1982. Sediment gravity flows;Ⅱ,depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research, 52(1): 279-297. [22] Mayall M,Jones E,Casey M. 2006. Turbidite channel reservoirs: key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821-841. [23] Miramontes E,Eggenhuisen J T,Jacinto R S,Poneti G,Pohl F,Normandeau A,Campbell D C,Hernández-Molina F J. 2020. Channel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments. Geology, 48(4): 353-357. [24] Palermo D,Galbiati M,Famiglietti M,Marchesini M,Mezzapesa D,Fonnesu F. 2014. Insights into a new super-giant gas field-sedimentology and reservoir modeling of the coral reservoir complex,offshore northern Mozambique. In: Offshore Technology Conference-Asia,25-28 March,Kuala Lumpur,Malaysia. [25] Peakall J,McCaffrey B,Kneller B. 2000. A process model for the evolution,morphology,and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70(3): 434-448. [26] Piper D J,Normark W R. 1983. Turbidite depositional patterns and flow characteristics,Navy submarine fan,California Borderland. Sedimentology, 30(5): 681-694. [27] Posamentier H W,Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of sedimentary Research, 73(3): 367-388. [28] Shanmugam G. 2016. Submarine fans: a critical retrospective(1950-2015). Journal of Palaeogeography, 5(2): 110-184. [29] Sprague A R,Sullivan M D,Campion K M,Jensen G N,Goulding D K,Sickafoose D K,Jennette D C. 2002. The physical stratigraphy of deep-water strata: a hierarchical approach to the analysis of genetically related elements for improved reservoir prediction. In: American Association of Petroleum Geologists Annual Meeting Abstracts,Houston,Texas: 10-13. [30] Zhang J J,Wu S H,Wang X,Lin Y,Fang H J,Jiang L,Wang Q H,Yin H,Lu Y. 2015. Reservoir quality variations within a sinuous deep water channel system in the Niger Delta Basin,offshore West Africa. Marine and Petroleum Geology, 63: 166-188. [31] Zhang J J,Wu S H,Hu G Y,Fan T E,Yu B,Lin P,Jiang S N. 2018. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin. Marine and Petroleum Geology, 94: 179-197. [32] Wynn R B,Masson D G. 2008. Sediment waves and bedforms. In: Rebesco M,Camerlenghi A(eds). Contourites,Developments in Sedimentology,vol. 60. Elsevier,Amsterdam: 289-300. |