[1] 蔡露露,王雅宁,王颖,董朔朋,朱石磊,廖计华,赵钊,薛冬. 2016. 西非深水沉积类型特征及油气勘探意义. 石油学报, 37(S1): 131-142. [Cai L L,Wang Y N,Wang Y,Dong S P,Zhu S L,Liao J H,Zhao Z,Xue D. 2016. Type features and hydrocarbon exploration significance of deepwater sedimentary in West Africa. Acta Petrolei Sinica, 37(S1): 131-142] [2] 陈华,林畅松,张忠民,张德民,朱奕璇,吴高奎,李茗,徐海,郭荣涛. 2021. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化. 石油实验地质, 43(3): 476-486. [Chen H,Lin C S,Zhang Z M,Zhang D M,Zhu Y X,Wu G K,Li M,Xu H,Guo R T. 2021. Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo Fan Basin,West Africa. Petroleum Geology & Experiment, 43(3): 476-486] [3] 陈亮,赵千慧,王英民,李爱山,陈宇航. 2020. 深水水道沉积单元及演化分析. 海洋地质前沿, 36(3): 12-19. [Chen L,Zhao Q H,Wang Y M,Li A S,Chen Y H. 2020. Depositional elements of deepwater channels and their evolution. Marine Geology Frontiers, 36(3): 12-19] [4] 传婷婷. 2013. 鄂尔多斯盆地西缘奥陶系沉积特征及构造意义. 中国地质大学(北京)硕士论文:43-45. [Chuan T T. 2013. The sedimentary features and tectonic implications of Ordovician in the western margin of Ordos Basin. Masteral dissertation of China University of Petroleum: 43-45] [5] 段瑞凯,张旭,郭富欣,陈国宁,胡光义,邹婧芸. 2022. 深水复合朵体内部沉积结构及其叠置模式: 以尼日尔三角洲盆地Akpo油田中新统D油组为例. 岩性油气藏, 34(5): 110-120. [Duan R K,Zhang X,Guo F X,Chen G N,Hu G Y,Zou J Y. 2022. Internal sedimentary structure and patterns of deep-water lobe complex: a case study of Miocene Zone D in Akpo oilfield,Niger Delta Basin. Lithologic Reservoirs, 34(5): 110-120] [6] 费安玮. 2001. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境. 高校地质学报, 7(3): 278-287. [Fei A W. 2001. Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin. Geological Journal of China Universities, 7(3): 278-287] [7] 晋慧娟,孙明良,李育慈. 2005. 内蒙古桌子山中奥陶统的“特殊”浊积岩系. 沉积学报, 23(1): 34-40. [Jin H J,Sun M L,Li Y C. 2005. The “special”turbidite measure of the middle Ordovician series in Zhuozishan area,inner Mongolia. Acta Sedimentologica Sinica, 23(1): 34-40] [8] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报, 33(S2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H. 2012. Lithofacies paleogeography under sequence stratigraphic framework of Ordovician in Ordos Basin. Acta Petrolei Sinica, 33(S2): 95-109] [9] 郭彦如,赵振宇,徐旺林,史晓颖,高建荣,包洪平,刘俊榜,张延玲,张月巧. 2014. 鄂尔多斯盆地奥陶系层序地层格架. 沉积学报, 32(1): 44-60. [Guo Y R,Zhao Z Y,Xu W L,Shi X Y,Gao J R,Bao H P,Liu J B,Zhang Y L,Zhang Y Q. 2014. Sequence stratigraphy of the Ordovician system in the Ordos Basin. Acta Sedimentologica Sinica, 32(1): 44-60] [10] 李华,何幼斌. 2020. 深水重力流水道沉积研究进展. 古地理学报, 22(1): 161-174. [Li H,He Y B. 2020. Research progress on deepwater gravity flow channel deposit. Journal of Palaeogeography(Chinese Edition), 22(1): 161-174] [11] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X. 2018. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 43(6): 2149-2159] [12] 李华,何幼斌,谈梦婷,冯斌,葛稳稳,孙玉玺,于星. 2022. 深水重力流水道—朵叶体系形成演化及储层分布: 以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例. 石油与天然气地质, 43(4): 917-928. [Li H,He Y B,Tan M T,Feng B,Ge W W,Sun Y X,Yu X. 2020. Evolution of reservoir distribution with deep-water gravity flow channel-lobe systerm: a case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin. Oil & Gas Geology, 43(4): 917-928] [13] 李磊,闫瑞,李宁涛,杨蕾,张锦飞,刘阳,牛旭业,孙宇锋. 2015. 西非Rio Muni盆地深水水道特征与成因. 现代地质, 29(1): 80-88. [Li L,Yan R,Li N T,Yang L,Zhang J F,Liu Y,Niu X Y,Sun Y F. 2015. Characteristics and origin of deep-water channels in Rio Muni Basin,West Africa. Geoscience, 29(1): 80-88] [14] 李全,吴伟,康洪全,任世君,逄林安,杨婷,蔡露露,刘小龙. 2019. 西非下刚果盆地深水水道沉积特征及控制因素. 石油与天然气地质, 40(4): 917-929. [Li Q,Wu W,Kang H Q,Ren S J,Pang L A,Yang T,Cai L L,Liu X L. 2019. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin,West Africa. Oil & Gas Geology, 40(4): 917-929] [15] 李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1315. [Li X D,Chen H Y,Chen H D. 2019. Deep-water combined-flow deposits of the Upper Ordovician Lashizhong Formation in Zhuozishan area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1305] [16] 李向东,陈海燕. 2020a. 深水环境下古水流方向分析和阻塞浊流沉积的识别: 以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41(11): 1348-1365. [Li X D,Chen H Y. 2020a. Analysis of palaeocurrent direction and identification of ponded turbidity currents deposits in deep-water environment: a case study of the Upper Ordovician Lashizhong Formationin Zhuozishan area,Ordos Basin. Acta Petrolei Sinica, 41(11): 1348-1365] [17] 李向东,陈海燕. 2020b. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积. 地球科学, 45(4): 1266-1280. [Li X D,Chen H Y. 2020b. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 45(4): 1266-1280] [18] 李向东,魏泽昳,陈洪达. 2022. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报, 18(3): 1-17. [Li X D,Wei Z Y,Chen H D. 2022. Genetic analysis of internal-wave and internal-tide deposits in Upper Ordovician Lashizhong Formation,western Ordos Basin. Acta Geologica Sinica, 18(3): 1-17] [19] 孙辉,范国章,邵大力,左国平,刘少治,王红平,马宏霞,许小勇,鲁银涛,闫春. 2021. 深水局部限制型水道复合体沉积特征及其对储层性质的影响: 以东非鲁武马盆地始新统为例. 石油与天然气地质, 42(6): 1440-1450. [Sun H,Fan G Z,Shao D L,Zuo G P,Liu S Z,Wang H P,Ma H X,Xu X Y,Lu Y T,Yan C. 2021. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties: a case study of the Eocene series,Rovuma Basin. Oil & Gas Geology, 42(6): 1440-1450] [20] 田荣恒,鲜本忠,晁储志,刘建平,张国栋,王俊辉,陈鹏. 2021. 重力流水道沉积特征与沉积模式: 以鄂尔多斯盆地瑶曲铁路桥剖面三叠系延长组为例. 古地理学报, 23(5): 967-982. [Tian R H,Xian B Z,Chao S Z,Liu J P,Zhang G D,Wang J H,Chen P. 2021. Sedimentary characteristics and model of lacustrine gravity flow channel: a case study of the Triassic Yanchang Formation of Yaopu railway-bridge section in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 23(5): 967-982] [21] 肖彬. 2014. 深水水道沉积体系及成因机制研究. 长江大学博士论文: 16-35. [Xiao B. 2014. Sedimentary system and formation mechanism of deep-water channel complex. Doctoral dissertation of Yangtze University: 16-35] [22] 肖彬,何幼斌,罗进雄,苑伯超. 2013. 内蒙古桌子山中奥陶统拉什仲组岩石特征及沉积环境. 科技导报, 31(34): 45-51. [Xiao B,He Y B,Luo J X,Yuan B C. 2013. Petrological characteristics and sedimentary environment of the Middle Ordovician Lashizhong Formation at Zhuozishan area,Inner Mongolia Autonomous Region. Science & Technology Review, 31(34): 45-51] [23] 肖彬,何幼斌,罗进雄,苑伯超. 2014. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积. 地质论评, 60(2): 321-331. [Xiao B,He Y B,Luo J X,Yuan B C. 2014. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia. Geological Review, 60(2): 321-331] [24] 许淑梅,冯怀伟,李三忠,李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32(7): 2137-2150. [Xu S M,Feng H W,Li S Z,Li M. 2016. Study on caledonian movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137-2150] [25] 王光绪,吴伟,林畅松,叶雅萌,李全,刘惟庆,冯阵东,赵晓明. 2022. 新西兰Taranaki盆地第四系深水水道迁移规律与沉积模式. 中国石油大学学报(自然科学版), 46(3): 13-24. [Wang G X,Wu W,Lin C S,Ye Y M,Li Q,Liu W Q,Feng Z D,Zhao X M. 2022. Migration rules and depositional model of Quaternary deep-water channel in Taranaki Basin,New Zealand. Journal of China University of Petroleum(Edition of Natural Science), 46(3): 13-24] [26] 王鹏伟,李华,陈诚,刘映君. 2020. 深水重力流沉积类型与储集性能研究: 以鄂尔多斯盆地西缘奥陶系拉什仲组为例. 海洋地质前沿, 36(1): 59-66. [Wang P W,Li H,Chen C,Liu Y J. 2020. Types of deep-water gravity flow deposits and related reservoirs: a case from the Lashizhong Formation of Ordovician on the western margin of Ordos Basin. Marine Geology Frontiers, 36(1): 59-66] [27] 吴东旭,周进高,吴兴宁,丁振纯,于洲,王少依,李维岭,王淑敏. 2018. 鄂尔多斯盆地西缘早中奥陶世岩相古地理研究. 高校地质学报, 24(5): 747-760. [Wu D X,Zhou J G,Wu X N,Ding Z C,Yu Z,Wang S Y,Li W L,Wang S M. 2018. Lithofacies and paleogeography of the Early-Middle Ordovician in western Ordos Basin. Geological Journal of China Universities, 24(5): 747-760] [28] 吴兴宁,孙六一,于洲,任军峰,丁振纯,黄正良. 2015. 鄂尔多斯盆地西部奥陶纪岩相古地理特征. 岩性油气藏, 27(6): 87-96. [Wu X N,Sun L Y,Yu Z,Ren J F,Ding Z C,Huang Z L. 2015. Lithofacies paleogeography of Ordovician in western Ordos Basin. Lithologic Reservoirs, 27(6): 87-96] [29] 王振涛,周洪瑞,王训练,张永生,景秀春,邢恩袁. 2015. 鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用. 地质学报, 89(11): 1990-2004. [Wang Z T,Zhou H R,Wang X L,Zhang Y S,Jing X C,Xing E Y. 2015. Ordovician geological events group in the west and south Ordos Basin. Aata Geologica Sinica, 89(11): 1990-2004] [30] 王振涛,周洪瑞,王训练,景秀春,张永生,袁路鹏,沈智军. 2016. 鄂尔多斯盆地西缘北部奥陶纪盆地原型: 来自贺兰山和桌子山地区奥陶系的沉积响应. 地质论评, 62(4): 1041-1061. [Wang Z T,Zhou H R,Wang X L,Jing X C,Zhang Y S,Yuan L P,Shen Z J. 2016. The Ordovician Basin prototype in the northwest Ordos Basin: constraint from the Ordovician sedimentary respond in the Helan-Zhuozi Mountains. Geological Review, 62(4): 1041-1061] [31] 张文彪,段太忠,刘志强,刘彦锋,杨志成,徐睿. 2017. 深水浊积水道沉积构型模式及沉积演化: 以西非M油田为例. 地球科学, 42(2): 273-285. [Zhang W B,Duan T Z,Liu Z Q,Liu Y F,Yang Z C,Xu R. 2017. Architecture model and sedimentary evolution of deepwater turbidity channel: a case study of M oilfield in West Africa. Earth Science, 42(2): 273-285] [32] 张旭,卜范青,段瑞凯,杨希濮,陈筱,郜益华. 2021. 尼日尔三角洲盆地深水区E油田重力流水道复合体沉积特征与内部期次解剖. 海相油气地质, 26(2): 170-178. [Zhang X,Bu F Q,Duan R K,Yang X P,Chen X,Gao Y H. 2021. Sedimentary characteristics and internal phase anatomy of gravity flow channel complex of E Oilfield in deep water area of Niger Delta Basin. Marine Origin Petroleum Geology, 26(2): 170-178] [33] 赵晓明,刘丽,谭程鹏,范廷恩,胡光义,张迎春,张文彪,宋来明. 2018. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲盆地陆坡区为例. 古地理学报, 20(5): 825-840. [Zhao X M,Liu L,Tan C P,Fan T E,Hu G Y,Zhang Y C,Zhang W B,Song L M. 2018. Styles of submarine-channel architecture and its controlling factors: a case study from the Niger Delta Basin slope. Journal of Palaeogeography(Chinese Edition), 20(5): 825-840] [34] 赵晓明,刘飞,葛家旺,冯潇飞,Bouchakour M,张喜,张文彪,杨宝泉,杨莉. 2022. 深水水道沉积构型单元分级与结构样式. 沉积学报,1-19. DOI: 10.14027/j.issn.1000-0550.2022.048. [Zhao X M,Liu F,Ge J W,Fan X F,Bouchakour M,Zhang X,Zhang W B,Yang B Q,Yang L. 2022. Sedimentary architecture unit classification and structural style of deep-water channels. Acta Sedimentologica Sinica,1-19. DOI: 10.14027/j.issn.1000-0550.2022.048] [35] Alpak F O,Barton M D,Naruk S J. 2013. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance. AAPG Bulletin, 97(2): 251-284. [36] Antobreh A A,Krastel S. 2006. Morphology,seismic characteristics and development of Cap Timiris Canyon,offshore Mauritania: a newly discovered canyon preserved-off a major arid climatic region. Marine and Petroleum Geology, 23(1): 37-59. [37] Ashiru O R,Qin Y,Wu S. 2020. Structural controls on submarine channel morphology,evolution,and architecture,offshore western Niger delta. Marine and Petroleum Geology, 118:104413. [38] Bouma A H. 2001. Fine-grained submarine fans as possible recorders of long-and short-term climatic changes. Global and Planetary Change, 28(1-4): 85-91. [39] Fildani A,Hubbard S M,Covault J A,Maier k L,Romans B W,Traer M,Rowland J C. 2013. Erosion at inception of deep-sea channels. Marine and Petroleum Geology, 41: 48-61. [40] Folk R L,Ward W C. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology,(27): 3. [41] Fonnesu M,Palermo D,Galbiati M,Marchesini M,Bonamini E,Bendias D. 2020. A new world-class deep-water play-type,deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111: 179-201. [42] Kneller B. 2003. The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20: 901-910. [43] McHargue T,Pyrcz M J,Sullivan M D,Clark J D,Fildani A,Romans B W,Covault J A,Levy M,Posamentier H W,Drinkwater N J. 2011. Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28(3): 728-743. [44] Mayall M,Jones E,Casey M. 2006. Turbidite channel reservoirs: key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821-841. [45] Li H,Zhao H Y,Xu Y X,He Y B. 2021. Characteristics of debrites,turbidites,and contourites in the Upper Ordovician Pingliang Formation along southwestern margin of the Ordos Basin,western China. Arabian Journal of Geosciences, 14(17): 2-15. [46] Harris P T,Whiteway T. 2011. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Marine Geology, 285(1-4): 69-86. [47] Zhang J J,Wu S H,Hu G Y,Fan T E,Yu B,Lin P,Jiang S N. 2018. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin. Marine and Petroleum Geology, 94: 179-197. |