[1] 包洪平,杨承运,黄建松. 2004. “干化蒸发”与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识. 古地理学报, 6(3): 279-288. [Bao H P,Yang C Y,Huang J S.2004. “Evaporation drying” and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 6(3): 279-288] [2] 包洪平,何登发,王前平,张雷,张建伍,严婷,闫伟. 2022. 鄂尔多斯盆地四大古隆起演化及其油气控藏意义的差异. 古地理学报, 24(5): 951-969. [Bao H P,He D F,Wang Q P,Zhang L,Zhang J W,Yan T,Yan W.2022. Four main paleouplifts evolution in Ordos Basin and their differences in significance of oil and gas reservoir control. Journal of Palaeogeography(Chinese Edition), 24(5): 951-969] [3] 丁晓琪,高景云,祁壮壮,张威,刘四洪,李春堂. 2022. 鄂尔多斯盆地北部奥陶系马家沟组中组合承压水岩溶特征. 天然气勘探与开发, 45(4): 1-9. [Ding X Q,Gao J Y,Qi Z Z,Zhang W,Liu S H,Li C T.2022. Characteristics of confined-water karst in middle assemblage of the Ordovician Majiagou Formation,northern Ordos Basin. Natural Gas Exploration and Development, 45(4): 1-9] [4] 董云鹏,惠博,孙圣思,杨钊,张菲菲,何登峰,孙娇鹏,史小辉. 2022. 中国中央造山系原—古特提斯多阶段复合造山过程. 地质学报, 96(10): 3426-3448. [Dong Y P,Hui B,Sun S S,Yang Z,Zhang F F,He D F,Sun J P,Shi X H.2022. Multiple orogeny and geodynamics from proto-Tethys to paleo-Tethys of the Central China Orogenic Belt. Acta Geologica Sinica, 96(10): 3426-3448] [5] 冯增昭. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社. [Feng Z Z.1990. Lithofacies paleogeography of Early Paleozoic of North China Platform.Beijing: Geological Publishing House] [6] 付金华,王宝清,孙六一,包洪平,徐波. 2011. 鄂尔多斯盆地苏里格地区奥陶系马家沟组白云石化. 石油实验地质, 33(3): 266-273. [Fu J H,Wang B Q,Sun L Y,Bao H P,Xu B.2011. Dolomitization of Ordovician Majiagou Formation in Sulige region,Ordos Basin. Petroleum Geology & Experiment, 33(3): 266-273] [7] 付金华,吴兴宁,孙六一,于洲,黄正良,丁振纯. 2017. 鄂尔多斯盆地马家沟组中组合岩相古地理新认识及油气勘探意义. 天然气工业, 37(3): 9-16. [Fu J H,Wu X N,Sun L Y,Yu Z,Huang Z L,Ding Z C.2017. New understandings of the lithofacies paleogeography of the middle assemblage of Majiagou Fm in the Ordos Basin and its exploration significance. Natural Gas Industry, 37(3): 9-16] [8] 何登发,包洪平,孙方源,张才利,开百泽,许艳华,成祥,翟咏荷. 2020. 鄂尔多斯盆地中央古隆起的地质结构与成因机制. 地质科学, 55(3): 627-656. [He D F,Bao H P,Sun F Y,Zhang C L,Kai B Z,Xu Y H,Cheng X,Zhai Y H.2020. Geologic structure and genetic mechanism for the central uplift in the Ordos Basin. Chinese Journal of Geology, 55(3): 627-656] [9] 何发岐,张威,丁晓琪,祁壮壮,李春堂,孙涵静. 2023. 鄂尔多斯盆地乌审旗古隆起对岩溶气藏的控制机理. 石油与天然气地质, 44(2): 276-291. [He F Q,Zhang W,Ding X Q,Qi Z Z,Li C T,Sun H J.2023. Controlling mechanism of Wushenqi paleo-uplift on paleo-karst gas reservoirs in Ordos Basin. Oil & Gas Geology, 44(2): 276-291] [10] 李承森. 1994. 生物进化的重大事件: 陆地植物的起源及其研究的新进展. 中国科学基金, 8(4): 238-244. [Li C S.1994. Origin of land plants is an important event of life evolution. Bulletin of National Science Foundation of China, 8(4): 238-244] [11] 李文厚,陈强,李智超,王若谷,王妍,马瑶. 2012. 鄂尔多斯地区早古生代岩相古地理. 古地理学报, 14(1): 85-100. [Li W H,Chen Q,Li Z C,Wang R G,Wang Y,Ma Y.2012. Lithofacies palaeogeography of the Early Paleozoic in Ordos area. Journal of Palaeogeography(Chinese Edition), 14(1): 85-100] [12] 邵东波,包洪平,魏柳斌,蔡郑红,武春英,周黎霞,曹岩刚. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556. [Shao D B,Bao H P,Wei L B,Cai Z H,Wu C Y,Zhou L X,Cao Y G.2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556] [13] 魏柳斌,陈洪德,郭玮,严婷,蔡郑红,周黎霞. 2021. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用. 石油与天然气地质, 42(2): 391-400. [Wei L B,Chen H D,Guo W,Yan T,Cai Z H,Zhou L X.2021. Wushen-Jingbian Paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin. Oil & Gas Geology, 42(2): 391-400] [14] 徐旺林,李建忠,刘新社,李宁熙,张才利,张月巧,付玲,白莹,黄正良,高建荣,孙远实,宋微. 2021. 鄂尔多斯盆地奥陶系下组合天然气成藏条件与勘探方向. 石油勘探与开发, 48(3): 549-561. [Xu W L,Li J Z,Liu X S,Li N X,Zhang C L,Zhang Y Q,Fu L,Bai Y,Huang Z L,Gao J R,Sun Y S,Song W.2021. Accumulation conditions and exploration directions of Ordovician lower assemblage natural gas,Ordos Basin,NW China. Petroleum Exploration and Development, 48(3): 549-561] [15] 薛进庄,王嘉树,李炳鑫,黄璞,刘乐. 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. [Xue J Z,Wang J S,Li B X,Huang P,Liu L.2022. Origin and early evolution of land plants and the effects on Earth’s environments. Earth Science, 47(10): 3648-3664] [16] 周进高,席胜利,邓红婴,于洲,刘新社,丁振纯,李维岭,唐瑾. 2020. 鄂尔多斯盆地寒武系—奥陶系深层海相碳酸盐岩构造—岩相古地理特征. 天然气工业, 40(2): 41-53. [Zhou J G,Xi S L,Deng H Y,Yu Z,Liu X S,Ding Z C,Li W L,Tang J.2020. Tectonic-lithofacies paleogeographic characteristics of Cambrian-Ordovician deep marine carbonate rocks in the Ordos Basin. Natural Gas Industry, 40(2): 41-53] [17] Boggs S.2009. Petrology of Sedimentary Rocks(2nd edition). New York: Cambridge University Press. [18] De Putter T,Rouchy J M,Herbosch A,Keppens E,Pierre C,Groessens E.1994. Sedimentology and palaeo-environment of the upper Visean anhydrite of the Franco-Belgian Carboniferous basin(Saint-Ghislain borehole,southern Belgium). Sedimentary Geology, 90(1-2): 77-93. [19] Haq B,Gorini C,Baur J,Moneron J,Rubino J-L.2020. Deep Mediterranean’s Messinian evaporite giant: how much salt?Global and Planetary Change, 184(10): 103052. [20] James N P,Dalrymple R W.2010. Facies Model 4. Geological Association of Canada. [21] James N P,Jones B.2015. Origin of Carbonate Sedimentary Rocks. New York: John Wiley and Sons. [22] Manche C J,Kaczmarek S E.2019. Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas,USA. Geology, 47(6): 586-590. [23] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114(1): 189-222. [24] Reading H G.1996. Sedimentary Environments: Processes,Facies and Stratigraphy. Oxford: Blackwell Science. [25] Topper R P,Meijer P T.2015. The processional phase lag of Messinian gypsum deposition in Mediterranean marginal basins. Palaeogeography,Palaeoclimatology,Palaeoecology, 417(60): 6-16. [26] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Basil Blackwell. [27] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1-81. |