[1] 黄璐,张家年,吴昊雨,黄河清. 2013. 弯曲海底峡谷中浊流的三维流动及沉积的初步研究. 沉积学报, 31(6): 1001-1007. [Huang L,Zhang J N,Wu H Y,Huang H Q.2013. Preliminary study of three-dimensional flow and deposition of turbidity currents in sinuous submarine canyons. Acta Sedimentologica Sinica, 31(6): 1001-1007] [2] 姜在兴,赵澂林,刘孟慧. 1988. 一种沿深水箕状谷纵向搬运的重力流沉积. 石油实验地质, 10(2): 106-116. [Jiang Z X,Zhao Z L,Liu M H.1988. Replaced deposition of gravity flows along moving a deep water dustpan thalweg. Experimental Petroleum Geology, 10(2): 106-116] [3] 李华,何幼斌,王振奇. 2011. 深水高弯度水道—堤岸沉积体系形态及特征. 古地理学报, 13(2): 139-149. [Li H,He Y B,Wang Z Q.2011. Morphology and characteristics of deep water high sinuous channel-levee system. Journal of Palaeogeography(Chinese Edition), 13(2): 139-149] [4] 李华,王英民,徐强,韩自亮,徐艳霞. 2013. 深水单向迁移水道—堤岸沉积体系特征及形成过程. 现代地质, 27(3): 653-661. [Li H,Wang Y M,Xu Q,Han Z L,Xu Y X.2013. Characteristics and processes of deep water unidirectionally-migrating channel-levee system. Geoscience, 27(3): 653-661] [5] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X.2018. The type and evolution of deep-water channel deposits of the Ordovician Lashizhong Formation in western margin of the Ordos Basin. Earth Science, 43(6): 2149-2159] [6] 李文厚,周立发,符俊辉,赵文智,薛良清,靳久强. 1997. 库车坳陷上三叠统的浊流沉积及石油地质意义. 沉积学报, 15(1): 20-23. [Li W H,Zhou L F,Fu J H,Zhao W Z,Xue L Q,Jin J Q.1997. Turbidity current deposits and their significance for petroleum geology of Upper Triassic in the Kuqa Depression. Acta Sedimentologica Sinica, 15(1): 20-23] [7] 刘军,庞雄,颜承志,柳保军,李元平,胡琏,郑金云. 2011. 南海北部陆坡白云深水区浅层深水水道沉积. 石油实验地质, 33(3): 255-259. [Liu J,Pang X,Yan C Z,Liu B J,Li Y P,Hu L,Zheng J Y.2011. Shallow deepwater channels in Baiyun deepwater region of northern continental slope,South China Sea. Petroleum Geology & Experiment, 33(3): 255-259] [8] 林畅松,刘景彦,蔡世祥,张艳梅,吕明,李杰. 2001. 莺—琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69-72. [Lin C S,Liu J Y,Cai S X,Zhang Y M,Lü M,Li J.2001. Depositional architecture and developing setting of large scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan basins,South China Sea. Chinese Science Bulletin, 46(1): 69-72] [9] 庞雄,朱明,柳保军,颜承志,胡琏,郑金云. 2014. 南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 35(4): 646-653. [Pang X,Zhu M,Liu B J,Yan C Z,Hu L,Zheng J Y.2014. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea. Acta Petrolei Sinica, 35(4): 646-653] [10] 王华,陈思,甘华军,廖计华,孙鸣. 2015. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例. 地学前缘, 22(1): 21-34. [Wang H,Chen S,Gan H J,Liao J H,Sun M.2015. Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin. Earth Science Frontiers, 22(1): 21-34] [11] 王英民,王海荣,邱燕,彭学超,张文明,李文成. 2007. 深水沉积的动力学机制和响应. 沉积学报, 25(4): 495-504. [Wang Y M,Wang H R,Qiu Y,Peng X C,Zhang W M,Li W C.2007. Process of dynamics and its response of deep-water sedimentation. Acta Sedimentologica Sinica, 25(4): 495-504] [12] 汪品先. 2009. 深海沉积与地球系统. 海洋地质与第四纪地质, 29(4): 1-11. [Wang P X.2009. Deep sea sediments and earth system. Marine Geology & Quaternary Geology, 29(4): 1-11] [13] 吴时国,秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27(5): 922-930. [Wu S G,Qin Y S.2009. The research of deepwater depositional system in the Northern South China Sea. Acta Sedimentologica Sinica, 27(5): 922-930] [14] 解习农,陈志宏,孙志鹏,姜涛,何云龙. 2012. 南海西北陆源深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. [Xie X N,Chen Z H,Sun Z P,Jiang T,He Y L.2012. Depositional architecture characteristics of deepwater depositional systems on the continental margins of Northwestern South China Sea. Earth Science, 37(4): 627-634] [15] 翟明国,杨树锋,陈宁华,陈汉林. 2018. 大数据时代: 地质学的挑战与机遇. 中国科学院院刊, 33(8): 825-831. [Zhai M G,Yang S F,Chen N H,Chen H L.2018. Big data epoch: Challenges and opportunities for Geology. CAS Bulletin, 33(8): 825-831] [16] 赵鹏大. 2018. 地质大数据特点及其合理开发利用. 地学前缘, 26(4): 1-5. [Zhao P D.2018. Characteristics and rational utilization of geological big data. Earth Science Frontiers, 26(4): 1-5] [17] 郑荣才,郑哲,高博禹,王昌勇. 2013. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征. 岩性油气藏, 25(2): 1-8. [Zheng R C,Zheng Z,Gao B Y,Wang C Y.2013. Sedimentary features of the gravity flows in submarine fan of Zhujiang Formation in Baiyun Sag,Pearl River Mouth Basin. Lithologic Reservoirs, 25(2): 1-8] [18] 朱筱敏,谈明轩,董艳蕾,李维,秦祎,张自力. 2019. 当今沉积学研究热点讨论: 第20届国际沉积学大会评述. 沉积学报, 37(1): 1-16. [Zhu X M,Tan M X,Dong Y L,Li W,Qin Y,Zhang Z L.2019. Current hot topics of Sedimentology: Comment on the 20th international Sedimentological Congress. Acta Sedimentologica Sinica, 37(1): 1-16] [19] Abreu V,Sullivan M,Pirmez C,Mohrig D.2003. Lateral accretion packages(LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20: 631-648. [20] Amos K,Peakall J,Bradbury P W,Roberts M,Keevil G,Gupta S.2010. The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels. Marine and Petroleum Geology, 27: 1431-1447. [21] Bell D,Kane I A,Pontén A S M,Flint S S,Hodgson D M.2018. Spatial variability in depositional reservoir quality of deep-water channel fill and lobe deposits. Marine and Petroleum Geology, 98: 97-115. [22] Biscara L,Mulder T,Gonthier E,Cremer M,Faugères J C,Garlan T.2010. Migrating submarine furrows on Gabonese margin(West Africa)from Miocene to present: Influence of bottom currents?Geo-Temas, 11: 21-22. [23] Bouma A H.2000. Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers. Marine and Petroleum Geology, 17: 137-143. [24] Bourget J,Zaragosi S,Mudler T,Schneider J L,Garlan T,Wagoner Toer A,Mas V,Ell-Zimmermann N.2010. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: A case study from the Al Batha turbidite system,Oman margin. Sedimentary Geology, 229: 144-159. [25] Casciano C,Patacci M,Longhitano S,Tropeano M,Mccaffrey W,Celma C.2019. Multi-scale analysis of a migrating submarine channel system in a tectonically-confined basin: The Miocene Gorgoglione Flysch Formation,southern Italy. Sedimentology, 66: 205-240. [26] Celma C,Teloni R,Rustichelli A.2014. Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill,Monte Ascensione succession(Peri-Adriatic basin,eastern central Italy). International Journal of Earth Sciences,103: 843-875. [27] Clark J D,Pickering K T.1996. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG, 80: 194-221. [28] Covault J A,Kostic S,Paull C K,Sylvester Z,Fildani A.2017. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems,western North America. Marine Geology, 393: 4-20. [29] Cross N,Cunningham A,Cook R,Taha A,Esmaie E,Swidan N.2009. Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field,offshore west Nile Delta,Egypt. AAPG, 93(8): 1063-1086. [30] Cui H Y,Wu P K,Liu Y J,Nie Z M,Liu Y L,Ren Y Z.2015. Gravity flow channel character and reservoir prediction of the Miocene Congo fan basin,West Africa. Journal of African Earth Sciences, 108: 15-21. [31] Dade W B, Huppert H E.1995. A box model for non-entraining,suspension-driven gravity surges on horizontal surfaces. Sedimentology, 42: 453-471. [32] Deptuck M E, Sylvester Z. 2018. Submarine Fans and Their Channels,Levees,and Lobes. In: Micallef A,Krastel S,Savini A(eds). Submarine Geomorphology,Springer Geology,doi: 10.1007/978/-3-319-5782-1_15. [33] Deptuck M E,Sylvester Z,Pirmez C,O'Byrne C.2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope. Marine and Petroleum Geology, 24: 406-433. [34] Edwards D A,Leeder M R,Best J L,Pantin H M.1994. On experimental reflected density currents and the interpretataion of certain turbidites. Sedimentology, 41: 437-461. [35] Englert R G,Hubbard S M,Coutts D S,Matthews W A.2018. Tectonically controlled initiation of contemporaneous deep-water channel systems along a Late Cretaceous continental margin,western British Columbia,Canada. Sedimentology, 65: 2404-2438. [36] Garcia M,Parker G.1989. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition. Science, 245: 393-396. [37] Gong C L,Wang Y M,Steel R,Peakall J,Zhao X M,Su Q L.2016a. Flow processes and sedimentation in unidirectionally migrating deep-water channels: From a three-dimensional seismic perspective. Sedimentology, 63: 645-661. [38] Gong C L,Steel R J,Wang Y M,Lin C S,Olariu C.2016b. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, 157: 32-60. [39] Gong C L,Wang Y M,Rebesco M,Salon S,Steel R J.2018a. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?Geology, 46: 551-554. [40] Gong C L,Bulm M D,Wang Y M,Lin C S,Xu Q.2018b. Can climatic signals be discerned in a deep-water sink? An answer from the Pearl River source-to-sink sediment-routing system. GSA, 130: 661-677. [41] Gong C L,Steel R J,Wang Y M,Sweet M L,Xian B Z,Xu Q,Zhang B J.2019. Shelf-edge delta overreach at the shelf break can guarantee the delivery of terrestrial sediments to deep water at all sea-level stands. AAPG, 103: 65-90. [42] Hansen L,Janocko M,Kane I,Kneller B.2017. Submarine channel evolution,terrace development,and preservation of intra-channel thin-bedded turbidites: Mahin and Avon channels,offshore Nigeria. Marine Geology, 383: 146-167. [43] He Y L,Xie X N,Benjamin C.2013. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin,northern South China Sea. Marine and Petroleum Geology, 41: 264-276. [44] He Z G,Zhao L,Hu P,Yu C H,Lin Y T.2018. Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Advances in Water Resources, 119: 164-177. [45] Hernández-Molina F J,Llave E,Stow D A V. 2008. Contiental slope contourites. In: Rebesco M, Camerlenghi A(eds). Contourites Developments in Sedimentology 60. Elsevier: 379-408. [46] Hughes C J E.2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nature Communation, 7: 11896. doi: 10.1038/ncomms11896(2016). [47] Janocko M,Nemec W,Henriksen S,Warchol M.2013a. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41: 7-34. [48] Janocko M,Cartigny M B J,Nemec W,Hansen E W M.2013b. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations. Marine and Petroleum Geology, 41: 222-249. [49] Jobe Z,Bernhardt A,Lowe D.2010. Facies and architectural asymmetry in a conglomerate-rich submarine channel fill,Cerro Toro formation,Sierra Del Toro,Magallanes Basin,Chile. Journal of Sedimentary Research,80: 1085-1108. [50] Jolly B A,Lonergan L,Whittaker A C.2016. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70: 58-76. [51] Karl H A,Kenyon N H.1989. Lateral migration of Cascadia Channel in response to accretionary tectonics. Geology, 17: 144-147. [52] Keevil G M,Peakall J,Best J L,Amos K J.2006. Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel. Marine Geology, 229: 241-257. [53] Khan Z, Arnott R.2011. Stratal attributes and evolution of asymmetric inner-and outer-bend levee deposits associated with an ancient deep-water channel-levee complex within the Isaac Formation,southern Canada. Marine and Petroleum Geology, 28: 824-842. [54] Kneller B, Buckee C.2000. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications. Sedimentology, 47: 62-94. [55] Kolla V,Boures P,Safa P.2001. Evolution of deep-water Tertiary sinuous channels offshore Angola(West Africa)and implications for reservoir architecture. AAPG, 85(8): 1373-1405. [56] Kolla V,Posamentier H W,Wood L J.2007. Deep-water and fluvial sinuous channels: Characteristics,similarities and dissimilarities,and modes of formation. Marine and Petroleum Geology, 24: 388-405. [57] Labourdette R.2007. Integrated three-dimensional modeling approach of stacked turbidite channels. AAPG, 91(11): 1603-1618. [58] Labourdette R, Bez M.2010. Element migration in turbidite systems: Random or systematic depositional processes?AAPG, 94(3): 345-368. [59] Leeuw J,Eggenhuisen J T,Cartigny M J B.2016. Morphodynamics of submarine channel inception revealed by new experimental approach. Nature Communications, 7: 100886. doi: 10.1038/ncomms10886(2016). [60] Li H,He Y B,Wang Z Q.2010. Morphologic and sedimentary characteristics of a deep-water high sinuous channel-levee System in the Niger continental margin. Geo-Temas, 11: 99-100. [61] Li H,Wang Y M,Zhu W L,Xu Q,He Y B,Tang W,Zhuo H T,Wang D,Wu J P,Li D.2013. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea. Marine and Petroleum Geology, 43: 370-380. [62] Li P,Kneller B,Thompson P,Bozetti G,Santos T.2018. Architectural and facies organisation of slope channel fills: Upper Cretaceous Rosario Formation,Baja California,Mexico. Marine and Petroleum Geology, 92: 632-649. [63] Liu Z F,Li C F,Kulhanek D.2017. Preface: Evolution of the deep South China Sea: Integrated IODP Expedition 349 results. Marine Geology, 394: 1-3. [64] Ma B J,Wu S G,Sun Q L,Mi L J,Wang Z Z,Tian J.2015. The late Cenozoic deep-water channel system in the Baiyun Sag,Pearl River Mouth Basin: Development and tectonic effects. Deep-Sea Research Ⅱ, 122: 226-239. [65] Mayall M,Jones E,Casey M.2006. Turbidite channel reservoirs: Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23: 821-841. [66] McCaffrey W,Kneller B.2001. Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG, 85: 971-988. [67] McArthur A D,Kneller B C,Souza P A,Kuchle J.2016. Characterization of deep-marine channel-levee complex architecture with palynofacies: An outcrop example from the Rosarion Formation,Baja California,Mexico. Marine and Petroleum Geology, 73: 157-173. [68] Micallef A,Krastel S,Savini A. 2018. Submarine Geomorphology. Springer Geology. http://www.springer.com/series/10172. [69] Middleton G V.1966a. Experiments on density and turbidity currents Ⅰ. Motion of the head. Canada Journal of Earth Science, 3: 523-546. [70] Middleton G V.1966b. Experiments on density and turbidity currents Ⅱ. Uniform flow of density currents. Canada Journal of Earth Science, 3: 627-636. [71] Middleton G V.1967. Experiments on density and turbidity currents Ⅲ. Deposition of sediment. Canada Journal of Earth Science, 4: 475-505. [72] Middleton V and Neal W J.1989. Experiments on the thickness of beds deposited of beds deposited by turbidity currents. Journal of Sedimentary Petroleum, 59: 297-307. [73] Migeon S,Mulder T,Savoye B,Sage F.2012. Hydrodynamic processes,velocity structure and stratification in natural turbidity currents: Results inferred from field data in the Var Turbidite System. Sedimentary Geology, 245: 48-62. [74] Motanated K, Tice M M.2016. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation,Eddy County,New Mexico inferred by comparison to settling and sorting experiments. Sedimentary Geology, 337: 69-80. [75] Mulder T,Savoye B,Syvitski J P M.1997. Numerical modeling of a mid-sized gravity flow: The 1979 Nice turbidity current(dynamics,process,sediment budget and seafloor impact). Sedimentology, 44: 305-326. [76] Mulder T,Zaragosi S,Jouanneau J M,Bellaiche G,Guérinaud S,Querneau J.2009. Deposits related to the failure of the Malpasset Dam in 1959: An analogue for hyperpycnal deposits from jökulhlaups. Marine Geology, 260: 81-89. [77] Normark W R.1970. Growth patterns of deep-sea fans. AAPG, 54: 2170-2195. [78] Omosanya K O, Harshidayat D.2019. Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin(GSB)offshore New Zealand. Geo-Marine Letter, 39: 77-99. [79] Palozzi J,Pantopoulos G,Maravelis A G,Nordsvan A,Zelilidis A.2018. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough,SE Australia. Sedimentary Geology, 364: 160-179. [80] Parsons D R,Peakall J,Aksu A E,Flood R D,Hiscott R N,Beşiktepe S,Mouland D.2010. Gravity-driven flow in a submarine channel bend: Direct field evidence of helical flow reversal. Geology, 38: 1063-1066. [81] Paull C K,Talling P J,Maier K L,Parsons D,Xu J P,Caress D W,Gwiazda R,Lundsten E M,Anderson K,Barry J P,Chaffey M,O'Reilly T,Rosenberger K J,Gales J A,Kieft B,McGann M,Simmons S M,McCan M,Sumner E J,Clare M A,Cartigny M J.2018. Powerful turbidity currents driven by dense basal layers. Nature Communication, 9: 4114. doi: 10.1038/s41467-018-06254-6. [82] Peakall J,McCaffrey B,Kneller B.2000. Perspectives a process model for the evolution,morphology,and architecture submarine channels. Journal of Sedimentary Research, 70: 434-448. [83] Picot M,Marsset L D,Dennielou B,Bez M.2016. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture(Late Quaternary Congo Fan). Marine and Petroleum Geology, 72: 423-446. [84] Popescu I,Lericolaris G,Panin N,Wong H K,Droz L.2001. Later Quaternary channel avulsions on the Danube deep-sea fan,Black Sea. Marine Geology, 179: 25-37. [85] Posamentier H W.2003. Depositional elements associated with a basin floor channel-levee system: Case study from Gulf of Mexico. Marine and Petroleum Geology, 20: 677-690. [86] Posamentier H W, Walker V.2006. Models Revisited. Tulsa,Oklahoma,U.S.A.,473-476. [87] Rasmussen S.1994. The relationship between submarine canyon fill and sea-level change: An example from Middle Miocene offshore Gabon,west Africa. Sedimentary Geology, 90: 61-75. [88] Rasmussen S,Lykke-Andersen H,Kijpers A,Troelstra S R.2003. Post-Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents. Marine Geology, 196: 37-52. [89] Reading H G, Richards M.1994. Turbidite systems in deep water basin margins classified by grain size and feeder system. AAPG, 78: 792-822. [90] Reimchen A P,Hubbard S M,Stright L,Romans B W.2016. Using sea-floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77: 92-115. [91] Saller A H,Noah J T,Ruzuar A P,Schneider R.2004. Linked lowstand delta to basin-floor fan deposition offshore Indonesia: An analog for deep-water reservoir systems. AAPG, 88: 21-46. [92] Saller A, Dharmasamadhi I N W.2012. Controls on the development of valleys,canyons,and unconfined channel-levee complexes on the Pleistocene Slope of East Kalimantan,Indonesia. Marine and Petroleum Geology, 29: 15-34. [93] Schwenk T,Spieβ V,HÜbscher C,Breitzke M.2003. Frequent channel avulsions within the active channel-levee system of the middle Bengal Fan: An exceptional channel-levee development derived from Parasound and Hydrosweep data. Deep-Sea Research Ⅱ, 50: 1023-1045. [94] Séranne M, Abeigne C R.1999. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin(west Africa)Consequences for sedimentation and southeast Atlantic upwelling. Sedimentary Geology, 128: 179-199. [95] Shanmugam G.2000.50 years of the turbidite paradigm(1950s-1990s): deep-water processes and facies models: A critical perspective. Marine and Petroleum Geology, 17: 285-342. [96] Shanmugam G, Moiola R J.1995. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma. AAPG, 79: 672-695. [97] Skene K I,Mulder T,Syvitski J P M.1997. A model predicting the behavior of turbidity currents generated at river mouths. Computer Geosciences, 23: 975-991. [98] Stevenson C J,Feldens P,Georgiopoulou A,Schönke M,Krastel S,Piper D J W,Lindhorst K,Mosher D.2018. Reconstructing the sediment concentration of a giant submarine gravity flow. Nature Communication, 9: 2616. doi: 10.1038/s41467-018-05042-6. [99] Stow D A V, Mayall M.2000. Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17: 125-135. [100] Walker.1978. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic trap. The American Association of Petroleum Geologists, 62(6): 932-966. [101] Wynn R B,Cronin B T,Peakall J.2007. Sinuous deep-water channels: Genesis,geometry and architecture. Marine and Petroleum Geology, 24: 341-387. [102] Xu J P,Barry J P,Paull C K.2013. Small-scale turbidity currents in a big submarine canyon. Geology, 41: 143-146. [103] Zhang J J,Wu S H,Wang X,Lin Y,Fan H J,Jiang L,Wan Q H,Yin H,Lu Y.2015. Reservoir quality variations within a sinuous deep water channel system in the Niger Delta Basin,offshore West Africa. Marine and Petroleum Geology, 63: 166-188. [104] Zhang Y W,Liu Z F,Zhao Y L,Colin C,Zhang X D,Wang M,Zhao S H,Keller B.2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 46: 675-678. [105] Zhong G F,Cartigny M J B,Kuang Z G,Wang L L.2015. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geological Society of America Bulletin, 127: 804-824. [106] Zhu M,Graham S,Pang X,McHargue T.2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation,northern South China Sea. Marine and Petroleum Geology, 27: 307-319. |