[1] |
吕大炜, 徐锦程, 张之辉, 高洁, 杜文旭, 张奥聪, 王东东. 2024. 石炭纪全球野火事件分布及主控因素. 地质学报, 98(6): 1893-1903.
|
|
[Lü D W, Xu J C, Zhang Z H, Gao J, Du W X, Zhang A C, Wang D D. 2024. Distribution and controlling factors of the Carboniferous global wildfies. Acta Geologica Sinica, 98(6): 1893-1903 ]
|
[2] |
王东东, 胡鸿畅, 毛强, 吕大炜. 2024. 山东淄博地区太原组菱铁质结核成因及古环境意义. 古地理学报, 26(5): 1185-1200.
doi: 10.7605/gdlxb.2024.05.055
|
|
[Wang D D, Hu H C, Mao Q, Lü D W. 2024. Genesis and palaeoenviromental significance of siderite nodules in the Taiyuan Formation,Zibo area of Shandong Province,China. Journal of Palaeogeography(Chinese Edition), 26(5): 1185-1200 ]
|
[3] |
杨江海, 王圆, 刘佳, 马睿, 杜远生, 刘超, 余文超. 2021. 南华北早二叠世泥岩沉积与深时陆地古温度重建. 沉积学报, 39(3): 540-549.
|
|
[Yang J H, Wang Y, Liu J, Ma R, Du Y S, Liu C, Yu W C. 2021. Early Permian mudrock deposits and deep-time land surface temperature reconstruction,southern North China. Acta Sedimentologica Sinica, 39(3): 540-549 ]
|
[4] |
Baker S J. 2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth’s past. Earth-Science Reviews,224: 103871.
|
[5] |
Belcher C M, Yearsley J M, Hadden R M, McElwain J C, Rein G. 2010. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proceedings of the National Academy of Sciences, 107(52): 22448-22453.
|
[6] |
Benicio J R W, Jasper A, Spiekermann R, Garavaglia L, Pires-Oliveira E F, Machado N T G, Uhl D. 2019. Recurrent palaeo-wildfires in a Cisuralian coal seam: a palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil. PloS One, 14(3): e0213854.
|
[7] |
Berner R A. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70(23): 5653-5664.
|
[8] |
Berner R A. 2009. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. American Journal of Science, 309(7): 603-606.
|
[9] |
Berner R A, Kothavala Z. 2001. GEOCARB Ⅲ: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science, 301(2): 182-204.
|
[10] |
Blackford J J. 2000. Charcoal fragments in surface samples following a fire and the implications for interpretation of subfossil charcoal data. Palaeogeography,Palaeoclimatology,Palaeoecology, 164(1-4): 33-42.
|
[11] |
Boucot A J, Xu C, Scotese C R, Morley R J. 2013. Phanerozoic paleoclimate: an atlas of lithologic indicators of climate. SEPM(Society for Sedimentary Geology), Tulsa.
|
[12] |
Brown S A, Scott A C, Glasspool I J, Collinson M E. 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research,36: 162-190.
|
[13] |
Cleal C J, Cascales-Miñana B. 2014. Composition and dynamics of the great Phanerozoic evolutionary floras. Lethaia, 47(4): 469-484.
|
[14] |
Cope M J, Chaloner W G. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature, 283(5748): 647-649.
|
[15] |
DiMichele W A, Gastaldo R A, Pfefferkorn H W. 2005. Plant biodiversity partitioning in the Late Carboniferous and Early Permian and its implications for ecosystem assembly. Proceedings of the California Academy of Sciences,56: 32-49.
|
[16] |
Du W X, Lü D W, Zhang Z H, Lu M, Uhl D, Raji M, Wang L J, Zhang A C, Sun Y Z, Wang T T. 2024. Temporal and spatial evolution of wildfires during the Jurassic: from regional to global scale. Palaeogeography,Palaeoclimatology,Palaeoecology,650: 112359.
|
[17] |
Foster G L, Royer D L, Lunt D J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8(1): 14845.
|
[18] |
Friis E M, Pedersen K R, Crane P R. 2006. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography,Palaeoclimatology,Palaeoecology, 232(2-4): 251-293.
|
[19] |
Gastaldo R A, DiMichele W A, Pfefferkorn H W. 1996. Out of the icehouse into the greenhouse: a late Paleozoic analogue for modern global vegetational change. Gas Today,6: 1-7.
|
[20] |
Glasspool I J, Scott A C. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627-630.
|
[21] |
Glasspool I J, Gastaldo R A. 2022. Silurian wildfire proxies and atmospheric oxygen. Geology, 50(9): 1048-1052.
|
[22] |
Glasspool I J, Edwards D, Axe L. 2006. Charcoal in the Early Devonian: a wildfire-derived Konservat-Lagerstätte. Review of Palaeobotany and Palynology, 142(3-4): 131-136.
|
[23] |
Guerra-Sommer M, Cazzulo-Klepzig M, Jasper A, Kalkreuth W, Menegat R, Barboza E G. 2008. Paleoecological patterns at the coal-roof shale transition in an outcrop of the Permian Brazilian Gondwana. Revista Brasileira de Paleontologia, 11(1): 11-26.
|
[24] |
Glasspool I J, Scott A C, Waltham D, Pronina N, Shao L Y. 2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science,6: 756.
|
[25] |
Gulbranson E L, Ryberg P E, Decombeix A L, Taylor E L, Taylor T N, Isbell J L. 2014. Leaf habit of Late Permian Glossopteris trees from high-palaeolatitude forests. Journal of the Geological Society, 171(4): 493-507.
|
[26] |
Hamad A M B A, Jasper A, Uhl D. 2012. The record of Triassic charcoal and other evidence for palaeo-wildfires: signal for atmospheric oxygen levels,taphonomic biases or lack of fuel? International Journal of Coal Geology,96: 60-71.
|
[27] |
Hua F H, Shao L Y, Wang X T, Jones T P, Zhang T C, Bond D P G, Yan Z M, Hilton J. 2024. The impact of frequent wildfires during the Permian-Triassic transition: floral change and terrestrial crisis in southwestern China. Palaeogeography,Palaeoclimatology,Palaeoecology,641: 112129.
|
[28] |
Huang B C, Yan Y G, Piper J D A, Zhang D H, Yi Z, Yu S, Zhou T H. 2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews,186: 8-36.
|
[29] |
ICCP. 2001. The new inertinite classification(ICCP system 1994). Fuel, 80: 459-471.
|
[30] |
Jasper A, Uhl D, Guerra-Sommer M, Mosbrugger V. 2008. Palaeobotanical evidence of wildfires in the Late Paleozoic of South America-Early Permian,rio Bonito Formation,Paraná basin,Rio Grande do Sul,Brazil. Journal of South American Earth Sciences, 26(4): 435-444.
|
[31] |
Jones T P. 1994. New morphological and chemical evidence supporting a wildfire origin for fusain from comparisons with modern charcoal. Special Papers in Palaeontology,49: 113-123.
|
[32] |
Jones T P. 1997. Fusain in Late Jurassic sediments from the Witch Ground Graben,North Sea,UK. Inst voor Toegepaste Geowetenschappen TNO,58: 93-103.
|
[33] |
Jones T P, Chaloner W G. 1991. Fossil charcoal,its recognition and palaeoatmospheric significance. Palaeogeography,Palaeoclimatology,Palaeoecology, 97(1-2): 39-50.
|
[34] |
Jasper A, Uhl D, Guerra-Sommer M, Abu Hamad A, Machado N T G. 2011. Charcoal remains from a tonstein layer in the Faxinal Coalfield,Lower Permian,southern Paraná Basin,Brazil. Anais da Academia Brasileira de Ciências,83: 471-481.
|
[35] |
Jasper A, Guerra-Sommer M, Abu Hamad A M B, Bamford M, Bernardes-de-Oliveira M E C, Tewari R, Uhl D. 2013. The burning of Gondwana: Permian fires on the southern continent: a palaeobotanical approach. Gondwana Research, 24(1): 148-160.
|
[36] |
Jones M W, Smith A J P, Betts R, Canadell J G, Prentice I C, Le Quéré C. 2020. Climate Change Increases the Risk of Wildfires: January 2020. Gondwana Research,
|
[37] |
Jones M W, Kelley D I, Burton C A, Di Giuseppe F, Barbosa M L F, Brambleby E, Hartley A J, Lombardi A, Mataveli G, McNorton J R. 2024. State of wildfires 2023-2024. Earth System Science Data, 16(8): 3601-3685.
|
[38] |
Koplitz S N, Nolte C G, Pouliot G A, Vukovich J M, Beidler J. 2018. Influence of uncertainties in burned area estimates on modeled wildland fire PM2.5 and ozone pollution in the contiguous US. Atmospheric Environment,191: 328-339.
|
[39] |
Krawchuk M A, Moritz M A, Parisien M A, Van Dorn J, Hayhoe K. 2009. Global pyrogeography: the current and future distribution of wildfire. PloS One, 4(4): e5102.
|
[40] |
Liu B J, Zhao C L, Ma J L, Sun Y Z, Püttmann W. 2018. The origin of pale and dark layers in Pliocene lignite deposits from Yunnan Province,Southwest China: based on coal petrological and organic geochemical analyses. International Journal of Coal Geology,195: 172-188.
|
[41] |
Lu M, Ikejiri T, Lu Y H. 2021. A synthesis of the Devonian wildfire record: implications for paleogeography,fossil flora,and paleoclimate. Palaeogeography,Palaeoclimatology,Palaeoecology,571: 110321.
|
[42] |
Lü D W, Chen J T. 2014. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions(Shandong Province,China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences,79: 16-30.
|
[43] |
Lü D W, Du W X, Zhang Z H, Gao Y, Wang T T, Xu J C, Zhang A C, Wang C S. 2024. A synthesis of the Cretaceous wildfire record related to atmospheric oxygen levels? Journal of Palaeogeography, 13(1): 149-164.
|
[44] |
Marynowski L, Scott A C, Zatoń M, Parent H, Garrido A C. 2011. First multi-proxy record of Jurassic wildfires from Gondwana: evidence from the Middle Jurassic of the Neuquén Basin, Argentina. Palaeogeography,Palaeoclimatology,Palaeoecology, 299(1-2): 129-136.
|
[45] |
Mills B J W, Krause A J, Jarvis I, Cramer B D. 2023. Evolution of atmospheric O2 through the Phanerozoic,revisited. Annual Review of Earth and Planetary Sciences, 51(1): 253-276.
|
[46] |
Mishra D P, Singh V P, Saxena A, Uhl D, Murthy S, Pandey B, Kumar R. 2022. Palaeoecology and depositional setting of an Early Permian(Artinskian)mire based on a multi-proxy study at the Jagannath coal mine(Talcher Coalfield),Mahanadi Basin,India. Palaeogeography,Palaeoclimatology,Palaeoecology,601: 111124.
|
[47] |
Montañez I P, Poulsen C J. 2013. The Late Paleozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences, 41(1): 629-656.
|
[48] |
Murthy S, Uhl D, Jasper A, Sarate O S, Mishra D P. 2022. New evidence for palaeo-wildfire in the Early Permian(Artinskian)of Gondwana from Wardha Valley Coalfield,India. Journal of the Geological Society of India, 98(3): 395-401.
|
[49] |
Murthy S, Agnihotri D, Uhl D, Jasper A, Singh R K. 2023a. Palaeoenvironmental and stratigraphical implications of the palynoflora and macro-charcoal from the early Permian of the Chuperbhita Coalfield,Rajmahal Basin,Jharkhand,India. Journal of Palaeosciences, 72(2): 141-151.
|
[50] |
Murthy S, Saxena A, Khnagar R, Pillai S S K, Uhl D, Singh V P, h Gupta S, Borkar N. 2023b. Palynofloristics and wildfire evidence from Permian deposits of the Satpura Gondwana Basin, India: a multiproxy approach. Historical Biology: 1-22.
|
[51] |
Scotese C R. 2014. Atlas of Permo-Carboniferous Paleogeographic Maps(Mollweide Projection),Maps 53-64,Volumes 4. The Late Paleozoic,PALEOMAP Atlas for ArcGIS. PALEOMAP Project,Evanston,IL.
|
[52] |
Scott A C. 2000. The Pre-Quaternary history of fire. Palaeogeography,Palaeoclimatology,Palaeoecology, 164(1-4): 281-329.
|
[53] |
Scott A C. 2010. Charcoal recognition,taphonomy and uses in palaeoenvironmental analysis. Palaeogeography,Palaeoclimatology,Palaeoecology, 291(1-2): 11-39.
|
[54] |
Scott A C, Bowman D M J S, Bond W J, Pyne S J, Alexander M E. 2014. Fire on earth: an introduction. Fire Ecology, DOI: 10.5860/choice.52-0860.
|
[55] |
Shao L Y, Zhou J M, Jones T P, Hua F H, Xu X T, Yan Z M, Hou H H, Wang D D, Lu J. 2024. Inertinite in coal and its geoenvironmental significance: insights from AI and big data analysis. Science China Earth Sciences: 1-23.
|
[56] |
Shen W C, Zhao Q J, Uhl D, Wang J, Sun Y Z. 2023. Wildfire activity and impacts on palaeoenvironments during the late Paleozoic Ice Age: new data from the North China Basin. Palaeogeography,Palaeoclimatology,Palaeoecology,629: 111781.
|
[57] |
Skjemstad J O, Clarke P, Taylor J A, Oades J M, McClure S G. 1996. The chemistry and nature of protected carbon in soil. Soil Research, 34(2): 251-271.
|
[58] |
Sun Y Z. 2024. Review and update on the applications of inertinite macerals in coal geology,paleoclimatology,and paleoecology. Palaeoworld, 162(2): 193-200.
|
[59] |
Tewari R, Chatterjee S, Agnihotri D, Pandita S K. 2015. Glossopteris flora in the Permian Weller Formation of Allan Hills,South Victoria Land,Antarctica: implications for paleogeography,paleoclimatology,and biostratigraphic correlation. Gondwana Research, 28(3): 905-932.
|
[60] |
Uhl D, Lausberg S, Noll R, Stapf K R G. 2004. Wildfires in the late palaeozoic of central Europe: an overview of the rotliegend(upper Carboniferous-lower Permian)of the Saar-Nahe Basin(SW-Germany). Palaeogeography,Palaeoclimatology,Palaeoecology, 207(1-2): 23-35.
|
[61] |
Uhl D, Butzmann R, Fischer T C, Meller B, Kustatscher E. 2012. Wildfires in the Late Palaeozoic and Mesozoic of the Southern Alps-the late Permian of the Bletterbach-Butterloch area(northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 118(2): 223-233.
|
[62] |
Veraverbeke S, Rogers B M, Goulden M L, Jandt R R, Miller C E, Wiggins E B, Randerson J T. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change, 7(7): 529-534.
doi: 10.1038/NCLIMATE3329
|
[63] |
Wildman Jr R A, Hickey L J, Dickinson M B, Berner R A, Robinson J M, Dietrich M, Essenhigh R H, Wildman C B. 2004. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology, 32(5): 457-460.
|
[64] |
Yan M X, Wan M L, He X Z, Hou X D, Wang J. 2016. First report of Cisuralian(early Permian)charcoal layers within a coal bed from Baode,North China with reference to global wildfire distribution. Palaeogeography,Palaeoclimatology,Palaeoecology,459: 394-408.
|
[65] |
Zhou J M, Shao L Y, Jones T P, Huang Y Y, Chen M, Hou H H, Lu J, Hilton J'. 2024. Mechanisms of inertinite enrichment in Jurassic coals: insights from a big data-driven review. Earth-Science Reviews: 104889.
|