[1] 尘福艳,杨创,谭富荣,孙娇鹏,丁文龙. 2019. 微量元素分析在判别沉积介质环境中的应用: 以冀中坳陷东北部石炭—二叠系为例. 中国煤炭地质, 31(6): 15-22. [Chen F Y,Yang C,Tan F R,Sun J P,Ding W L.2019. Application of trace element analysis in sedimentary media environment differentiation: a case study of permo-carboniferous in northeastern part of central Hebei depression. Coal Geology of China, 31(6): 15-22] [2] 陈波,朱茂炎. 2023. 氧同位素在古温度重建及水循环研究中的应用. 科学通报, 68(12): 1528-1543. [Chen B,Zhu M Y.2023. Oxygen isotope application in paleotemperature reconstruction and water cycle in the deep time. Chinese Science Bulletin, 68(12): 1528-1543] [3] 陈波,Joachimski Michael M,沈树忠,Lambert Lance L,赖旭龙,王向东,陈军,袁东勋. 2013. 二叠纪冰期和古气候历史: 来自牙形刺氧同位素的证据. 见:中国古生物学会第十一次全国会员代表大会暨第27届学术年会论文摘要集. 浙江: 107-108. [Chen B,Joachimski M M,Shen S Z,Lambert L L,Lai X L,Wang X D,Chen J,Yuan D X.2013. Permain glacial and paleoclimatic history: evidence from oxygen isotope of conodonts. In: Abstract Volume,The 11th National Congress of the Palaeontological Society of China(PSC)and The 27th Annual Conference of PSC. Zhejiang: 107-108] [4] 程成. 2018. 陕西镇安西口二叠系沉积序列演化及古气候、古环境和古地理响应. 合肥工业大学博士学位论文: 67-68. [Cheng C.2018. The evolution of Permian sedimentary sequences in Zhen’an,Shaanxi,China,and its response to the changes of Permian paleoclimate,paleoenvironment and paleogeography. Doctoral dissertation of Hefei University of Technology: 67-68] [5] 樊秋爽,夏国清,李高杰,伊海生. 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171. [Fan Q S,Xia G Q,Li G J,Yi H S.2022. Analytical methods and research progress of redox conditions in the paleo-ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171] [6] 国家经济贸易委员会. 2003. 碎屑岩成岩阶段划分标准: SY/T5477-2033. 北京:石油工业出版社, 1-4. [State Economic Trade Commission.2003. Diagenetic Stage Dvision of Clastic Rocks: SY/T5477-2033. Beijing: Petroleum Industry Press, 1-4] [7] 李金虎,张智慧,秦明,仇建军,司荣军. 2011. 新疆且日克其菱铁矿床稀土元素地球化学特征. 矿产与地质, 25(1): 69-73. [Li J H,Zhang Z H,Qin M,Qiu J J,Si R J.2011. Geochemical characteristics of rare earth elements in Qierikeqi siderite deposit of Xinjiang. Mineral Resources and Geology, 25(1): 69-73] [8] 雒昆利,王五一,姚改焕,端木合顺,米娟层,张红民. 2000. 韩城矿区石炭—二叠系煤的含硫量和硫的成因. 西安科技学院学报, 20(4): 289-292,298. [Luo K L,Wang W Y,Yao G H,Duanmu H S,Mi J C,Zhang H M.2000. Sulfur content of permo-carboniferous coal and its geneses in Hancheng Mine. Xi’an University of Science & Technology Journal, 20(4): 289-292,298 [9] 吕大炜. 2006. 济阳坳陷上古生界煤成气储层沉积及储盖组合特征. 山东科技大学硕士学位论文: 11-24. [Lü D W.2006. Reservoir deposit and association of reservoic rock and cup rock of Upper Paleozoic in Jiyang depression. Masteral dissertation of Shandong University of Science and Technology: 11-24] [10] 吕大炜,刘海燕,孟彦如,李建委,宗瑞芳,张燕,王绪冰. 2014. 华北板块晚古生代海侵事件沉积类型及分布. 中国煤炭, 40(8): 35-38. [Lü D W,Liu H Y,Meng Y R,Li J W,Zong R F,Zhang Y,Wang X B.2014. Sediment types and distribution of transgression events in Late Paleozoic Era in North China plate. China Coal, 40(8): 35-38] [11] 马醒华,邢历生,杨振宇,徐树金,张景鑫. 1993. 鄂尔多斯盆地晚古生代以来古地磁研究. 地球物理学报, 36(1): 68-79. [Ma X H,Xing L S,Yang Z Y,Xu S J,Zhang J X.1993. Paleomagnetic study since late Paleozoic in the Ordos Basin. Chinese Journal of Geophysics, 36(1): 68-79] [12] 毛玲玲,伊海生,季长军,夏国清. 2014. 柴达木盆地新生代湖相碳酸盐岩岩石学及碳氧同位素特征. 地质科技情报, 33(1): 41-48. [Mao L L,Yi H S,Ji C J,Xia G Q.2014. Petrography and carbon-oxygen isotope characteristics of the Cenozoic lacustrine carbonate rocks in Qaidam Basin. Geological Science and Technology Information, 33(1): 41-48] [13] 孟昊,任影,钟大康,高崇龙,高宙,王点,姜杨锦丰,李谨杰. 2016. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义. 天然气地球科学, 27(7): 1299-1311. [Meng H,Ren Y,Zhong D K,Gao C L,Gao Z,Wang D,Jiang Y J F,Li J J.2016. Geochemical characteristic and its paleoenvironmental implication of Cambrian Longwangmiao Formaiton in eastern Sichuan Basin,China. Natural Gas Geoscience, 27(7): 1299-1311] [14] 邱明. 1984. 试论菱铁质结核的成因及其在地层对比中的应用. 矿物岩石, 4(1): 50-56. [Qiu M.1984. The origin of siderite concretions and their application in stratigraphic correlation. Journal of Mineralogy and Petrology, 4(1): 50-56] [15] 饶耕玮,刘晓东,刘平辉,戴朝成,黄光辉. 2020. 苏宏图白垩系黏土岩元素地球化学和黏土矿物特征及其古气候意义. 科学技术与工程, 20(25): 10160-10169. [Rao G W,Liu X D,Liu P H,Dai C C,Huang G H.2020. Elemental geochemistry and clay minerals of Cretaceous clay rocks in suhongtu and the paleoclimatic significance. Science Technology and Engineering, 20(25): 10160-10169] [16] 邵龙义. 1994. 碳酸盐岩氧、碳同位素与古温度等的关系. 中国矿业大学学报, 23(1): 39-45. [Shao L Y.1994. The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc. Journal of China University of Mining & Technology, 23(1): 39-45] [17] 邵龙义,窦建伟,张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575-581. [Shao L Y,Dou J W,Zhang P F.1996. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China. Geochimica, 25(6): 575-581] [18] 腾格尔,刘文汇,徐永昌,陈践发. 2004. 缺氧环境及地球化学判识标志的探讨: 以鄂尔多斯盆地为例. 沉积学报, 22(2): 365-372. [Tonger,Liu W H,Xu Y C,Chen J F.2004. The discussion on anoxic environments and its geochemical identifying indices. Acta Sedimentologica Sinica, 22(2): 365-372] [19] 汪宗欣. 2018. 元素地球化学对沉积环境的反映及其油气地质意义. 中国石油大学(北京)硕士学位论文: 43-45. [Wang Z X.2018. The response of elemental geochemistry to depositional environment and its petroleum geological significance. Masteral dissertation of China University of Petroleum(Beijing): 43-45] [20] 王宪峰,彭军,于乐丹,许天宇. 2020. 陆相地层古盐度地球化学研究方法综述. 四川地质学报, 40(2): 301-308. [Wang X F,Peng J,Yu L D,Xu T Y.2020. A review of the research methods of paleosalinity geochemistry in continental strata. Acta Geologica Sichuan, 40(2): 301-308] [21] 吴怀春,房强. 2020. 旋回地层学和天文时间带. 地层学杂志, 44(3): 227-238. [Wu H C,Fang Q.2020. Cyclostratigraphy and astrochronozones. Journal of Stratigraphy, 44(3): 227-238] [22] 吴怀春,张世红,冯庆来,方念乔,杨天水,李海燕. 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. [Wu H C,Zhang S H,Feng Q L,Fang N Q,Yang T S,Li H Y.2011. Theoretical basis,research advancement and prospects of cyclostratigraphy. Earth Science, 36(3): 409-428] [23] 许琪. 1991. 用煤层中铁、钴、镍的含量计算成煤沼泽的古pH值和古Eh值. 沉积学报, 9(4): 78-86. [Xu Q.1991. Using iron,cobalt,and nickel contents in coal seam to calculate the palaeo-pH value and palaeo-eh value of coal-forming swamp. Acta Sedimentologica Sinica, 9(4): 78-86] [24] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [25] 严雅娟. 2015. 贵州早二叠世碳酸盐岩地层古岩溶特征及对晚古生代冰期的响应. 中国地质大学博士学位论文: 67-71. [Yan Y J.2015. Palaeokarst characteristics of early Permian carbonate rocks in Guizhou,South China: implications for the Late Paleozoic glaciation. Doctoral dissertation of China University of Geosciences: 67-71] [26] 杨江海,王圆,刘佳,马睿,杜远生,刘超,余文超. 2021. 南华北早二叠世泥岩沉积与深时陆地古温度重建. 沉积学报, 39(3): 540-549. [Yang J H,Wang Y,Liu J,Ma R,Du Y S,Liu C,Yu W C.2021. Early Permian mudrock deposits and deep-time land surface temperature reconstruction,southern North China. Acta Sedimentologica Sinica, 39(3): 540-549] [27] 杨雪琪,钟大康,任影,谢瑞,姜杨锦丰,蒲强,钟泞聪,唐自成. 2017. 重庆东部地区寒武系龙王庙组碳、氧同位素特征及其意义. 古地理学报, 19(5): 865-878. [Yang X Q,Zhong D K,Ren Y,Xie R,Jiang Y J F,Pu Q,Zhong N C,Tang Z C.2017. Characteristics and significance of carbon and oxygen isotopes of the Cambrian Longwangmiao Formation,eastern Chongqing. Journal of Palaeogeography(Chinese Edition), 19(5): 865-878] [28] 伊海生,林金辉,周恳恳,李军鹏. 2007. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义. 古地理学报, 9(3): 303-312. [Yi H S,Lin J H,Zhou K K,Li J P.2007. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau. Journal of Palaeogeography(Chinese Edition), 9(3): 303-312] [29] 苑广尧,李凤杰. 2023. 柴达木盆地北缘古近系稀土元素地球化学特征及其地质意义. 天然气地球科学, 34(8): 1374-1384. [Yuan G Y,Li F J.2023. Geochemical characteristics and geological significance of Paleogene rare earth elements in the northern margin of Qaidam Basin. Natural Gas Geoscience, 34(8): 1374-1384] [30] 张彬,姚益民. 2013. 利用微量元素统计分析东营凹陷新生代沙四晚期湖泊古环境. 地层学杂志, 37(2): 186-192. [Zhang B,Yao Y M.2013. Trace element and palaeoenvironmental analyses of the Cenozoic lacustrine deposits in the upper Es4 submember of the Dongying Basin. Journal of Stratigraphy, 37(2): 186-192] [31] 张一杰. 2020. 黔西地区晚二叠世煤系高频层序格架内含菱铁矿岩层成岩演化. 中国矿业大学硕士学位论文: 61-64. [Zhang Y J.2020. Diagenetic evolution of siderite bearing strata in high frequency sequence of Late Permian coal measures in western Guizhou. Masteral dissertation of China University of Mining and Technology: 61-64] [32] 祝圣贤. 2019. 华北中部晚石炭—早二叠世古气候记录. 成都理工大学硕士学位论文: 41-43. [Zhu S X.2019. Paleoclimate records in permo-carboniferous of central North China. Masteral dissertation of Chengdu University of Technology: 41-43] [33] 庄军. 1988. 菱铁矿的鲕粒结构特征及形成环境. 煤田地质与勘探, 16(2): 7-10,72. [Zhuang J.1988. Characteristics of oolitic structure and formation environment of siderite. Coal Geology & Exploration, 16(2): 7-10,72] [34] Baumann L M F,Birgel D,Wagreich M,Peckmann J.2016. Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian Journal of Earth Sciences, 109(2): 211-232. [35] Bojanowski M J,Clarkson E N K.2012. Origin of siderite concretions in microenvironments of methanogenesis developed in a sulfate reduction zone: an exception or a rule? Journal of Sedimentary Research, 82: 585-598. [36] Chen B,Joachimski M L,Shen S Z Lambert L L,Lai X L,Wang X D,Chen J,Yuan D X.2013. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondwana Research, 24(1): 77-89. [37] Chen J T,Lee J H.2014. Current progress on the geological record of microbialites and microbial carbonates. Acta Geologica Sinica-English Edition, 88: 260-275. [38] Falahatkhah O,Kadkhodaie A,Ciabeghodsi A A,Wood D A.2021. Astronomical forcing variations of the Upper Dalan Member(Late Permian)in the South Pars gas field,Persian Gulf,Iran. Journal of Asian Earth Sciences, 209: 104689. [39] Fang Q,Wu H C,Wang X L,Yang T S,Li H Y,Zhang S H.2018. Astronomical cycles in the Serpukhovian-Moscovian(Carboniferous)marine sequence,South China and their implications for geochronology and icehouse dynamics. Journal of Asian Earth Sciences, 156: 302-315. [40] Given R K,Wilkinson B H.1985. Kinetic control of morphology,composition,and mineralogy of abiotic sedimentary carbonates. SEPM Journal of Sedimentary Research, 55: 109-119. [41] Hatch J R,Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A. Chemical Geology, 99: 65-82. [42] Husinec A,Read J F.2018. Cyclostratigraphic and δ13C record of the lower Cretaceous adriatic platform,Croatia: assessment of milankovitch-forcing. Sedimentary Geology, 373: 11-31. [43] Kaufman A,Knoll A.1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73: 27-49. [44] Keith M L,Weber J N.1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28(10-11): 1787-1816. [45] Kodama K P,Hinnov L A.2014. Rock Magnetic Cyclostratigraphy. New Jersey: Wiley, 52-89. [46] Laskar J,Fienga A,Gastineau M,Manche H.2011. La2010: A new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532: A89. [47] Li D,Ling H F,Jiang S Y,Pan J Y,Chen Y Q,Cai Y F,Feng H Z.2009. New carbon isotope stratigraphy of the Ediacaran-Cambrian boundary interval from SW China: implications for global correlation. Geological Magazine, 146(4): 465-484. [48] Li H C,Ku T L.1997. δ13C-δ18C covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography,Palaeoclimatology,Palaeoecology, 133(1-2): 69-80. [49] Li M S,Kump L R,Hinnov L A,Mann M E.2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501: 165-179. [50] Lü D W,Chen J T.2014. Depositional environments and sequence stratigraphy of the Late Carboniferous-Early Permian coal-bearing successions(Shandong Province,China): sequence development in an epicontinental basin. Journal of Asian Earth Sciences, 79: 16-30. [51] Lü D W,Wang L J,Isbell J L,Lu C Y,Li P P,Wang Y J,Zhang Z H.2022. Records of chemical weathering and volcanism linked to paleoclimate transition during the Late Paleozoic Icehouse. Global and Planetary Change, 217: 103934. [52] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. [53] Panahi A,Young G M,Rainbird R H.2000. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada. Geochimica et Cosmochimica Acta, 64: 2199-2220. [54] Passey R S.2014. The habit and origin of siderite spherules in the Eocene coal-bearing Prestfjall Formation,Faroe Islands. International Journal of Coal Geology, 122: 76-90. [55] Quan C,Liu Z H,Utescher T,Jin J H,Shu J W,Li Y X,Liu Y S.2014. Revisiting the Paleogene climate pattern of East Asia: a synthetic review. Earth-Science Reviews, 139: 213-230. [56] Shields G,Stille P.2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48. [57] Strasser A,Hilgen F J,Heckel P H.2006. Cyclostratigraphy-concepts,definitions,and applications. Newsletters on Stratigraphy, 42: 75-114. [58] Thomson D J.1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70: 1055-1096. [59] Trzesiok D,Krzykawski T,NiédZwiedzki R,Brom K,Gorzelak P,Salamon M A.2014. Palaeoenvironment of the Upper Cretaceous(coniacian)concretion-bearing lagerstätten from Poland. Palaeogeography,Palaeoclimatology,Palaeoecology, 401: 154-165. [60] Wang D D,Mao Q,Liu K Y,Lyu D W,Liu H Y,Yin Y T,Hu H C.2023. Genetic mechanism of Carboniferous-Permian coal measures siderite nodules in an epicontinental sea basin: an example from the Zibo area in North China. Ore Geology Reviews, 154: 105254. [61] Wei H Y,Wei X M,Qiu Z,Song H Y,Shi G.2016. Redox conditions across the G-L boundary in South China: evidence from pyrite morphology and sulfur isotopic compositions. Chemical Geology, 440: 1-14. [62] Weibel R,Lindström S,Pedersen G K,Johansson L,Dybkjær K,Whitehouse M J,Boyce A J,Leng M J.2016. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata. Sedimentary Geology, 342: 47-65. [63] Yang J H,Cawood P A,Du Y S.2015. Voluminous silicic eruptions during Late Permian Emeishan igneous Province and link to climate cooling. Earth and Planetary Science Letters, 432: 166-175. [64] Yang J H,Cawood P A,Du Y S,Li W Q,Yan J X.2016. Reconstructing Early Permian tropical climates from chemical weathering indices. Geological Society of America Bulletin, 128(5-6): 739-751. [65] Zang W S,Wu G G,Zhang D,Li J W,Zhang X X,Liu A H,Zhang Z Y.2010. Genesis of the Xinqiao gold-sulfide orefield,Anhui Province,China. Acta Geologica Sinica-English Edition, 78(2): 548-556. |