[1] 邓宏文,吴海波,王宁,Timothy A Cross.2007. 河流相层序地层划分方法: 以松辽盆地下白垩统扶余油层为例. 石油与天然气地质, 28(5): 621-627. [Deng H W,Wu H B,Wang N,Cross T A.2007. Division of fluvial sequence stratigraphy: an example from the Lower Cretaceous Fuyu oil-bearing layer, the Songliao Basin. Oil & Gas Geology, 28(5): 621-627] [2] 甘泉. 2021. 远源细粒辫状河心滩坝演化与河流分叉的交互沉积过程: 现代沉积启示与数值模拟分析. 地质科技通报, 40(1): 14-26. [Gan Q.2021. Interaction and sedimentary process between the evolution of the bar and bifurcation of the river in the far-source fine-grained braided river: numerical simulation analysis inspired by modern deposition. Bulletin of Geological Science and Technology, 40(1): 14-26] [3] 关旭同,吴鉴,魏凌云,赵进雍,冯庚,李严. 2019. 准噶尔盆地南缘建功煤矿剖面齐古组河流沉积与砂体构型. 新疆石油地质, 40(3): 290-297. [Guan X T,Wu J,Wei L Y,Zhao J Y,Feng G,Li Y.2019. Meandering river deposit and sand body architecture in Qigu Formation of Jiangong coal mine section in the southern margin of Junggar basin. Xinjiang Petroleum Geology, 40(3): 290-297] [4] 何维领,李少华,王军,张以根,于金彪,史敬华. 2019. 基于水槽沉积模拟实验的不同类型辫状河心滩坝发育特征及主控因素分析. 东北石油大学学报, 43(6): 13-22,82,5-6. [He W L,Li S H,Wang J,Zhang Y G,Yu J B,Shi J H.2019. Characteristics and key controlling factors of channel bar in different types of braided river based on flume tank experiments. Journal of Northeast Petroleum University, 43(6): 13-22,82,5-6] [5] 何宇航,宋保全,张春生. 2012. 大庆长垣辫状河砂体物理模拟实验研究与认识. 地学前缘, 19(2): 41-48. [He Y H,Song B Q,Zhang C S.2012. A study of braided river sand deposit in Changyuan,Daqing through physical simulation experiments. Earth Science Frontiers, 19(2): 41-48] [6] 金振奎,杨有星,尚建林,王林生. 2014. 辫状河砂体构型及定量参数研究: 以阜康、柳林和延安地区辫状河露头为例. 天然气地球科学, 25(3): 311-317. [Jin Z K,Yang Y X,Shang J L,Wang L S.2014. Sandbody architecture and quantitative parameters of single channel sandbodies of braided river: cases from outcrops of braided river in Fukang,Liulin and Yanan areas. Natural Gas Geoscience, 25(3): 311-317] [7] 李建平,熊连桥,黄涛,刘子玉. 2019. 加拿大Alberta盆地下白垩统油砂沉积特征分析及隔夹层识别. 中国海上油气, 31(5): 30-41. [Li J P,Xiong L Q,Huang T,Liu Z Y.2019. Sedimentary characteristics analysis and interlayer identification of the Lower Cretaceous oil sands in the Alberta basin,Canada. China Offshore Oil and Gas, 31(5): 30-41] [8] 李胜利,于兴河,姜涛,梁星如,苏东旭. 2017. 河流辫—曲转换特点与废弃河道模式. 沉积学报, 35(1): 1-9. [Li S L,Yu X H,Jiang T,Liang X R,Su D X.2017. Meander-braided transition features and abandoned channel patterns in fluvial environment. Acta Sedimentologica Sinica, 35(1): 1-9] [9] 李胜利,马水平,周练武,黄晓娣,韩波,李航. 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 47(11): 3960-3976. [Li S L,Ma S P,Zhou L W,Huang X D,Han B,Li H.2022. Main influencing factors of braided-meander transition and coexistence characteristics and implications of ancient fluvial sedimentary environment reconstruction. Earth Science, 47(11): 3960-3976] [10] 李伟. 2021. 基准面旋回控制的河流相储层构型样式及形成机理. 中国石油大学(北京)博士论文,1-148. [Li W.2021. Architecture models and formation mechanism of fluvial reservoirs in responsible for the base-level cycle. Doctoral dissertation of China University of Petroleum(Beijing),1-148] [11] 李伟,岳大力,李健,刘瑞璟,郭长春,王文枫,张海娜. 2022. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例. 地球科学, 47(11): 3977-3988. [Li W,Yue D L,Li J,Liu R J,Guo C C,Wang W F,Zhang H N.2022. Variable architecture models of fluvial reservoir controlled by base-level cycle: a case study of Jurassic outcrop in Datong basin. Earth Science, 47(11): 3977-3988] [12] 刘钰铭,侯加根,宋保全,周新茂,陈宏魁,张腊梅. 2011. 辫状河厚砂层内部夹层表征: 以大庆喇嘛甸油田为例. 石油学报, 32(5): 836-841. [Liu Y M,Hou J G,Song B Q,Zhou X M,Chen H K,Zhang L M.2011. Characterization of interlayers within braided-river thick sandstones: a case study on the Lamadian Oilfield in Daqing. Acta Petrolei Sinica, 32(5): 836-841] [13] 钱宁. 1985. 关于河流分类及成因问题的讨论. 地理学报, 40(1): 1-10. [Qian N.1985. On the classification and causes of formation of different channel patterns. Acta Geographica Sinica, 40(1): 1-10] [14] 任晓旭,侯加根,刘钰铭,陈德坡,张翔宇. 2018. 砂质辫状河不同级次构型表征及其界面控制下的岩性分布模式: 以山西大同盆地侏罗系辫状河露头为例. 石油科学通报, 3(3): 245-261. [Ren X X,Hou J G,Liu Y M,Chen D P,Zhang X Y.2018. Architectural characterization and a distribution model of lithology near the boundary surfaces of different orders in a sandy braided river: a case study from the Jurassic sandy braided-river outcrops in the Datong Basin,Shanxi Province. Petroleum Science Bulletin, 3(3): 245-261] [15] 邵学军, 王兴奎. 2013. 河流动力学概论. 北京: 清华大学出版社,264. [Shao X J, Wang X K.2012. Introduction to River Mechanics. Beijing: Tsinghua University Press,264] [16] 束青林. 2006. 孤岛油田馆陶组河流相储层隔夹层成因研究. 石油学报, 27(3): 100-103. [Shu Q L.2006. Interlayer characterization of fluvial reservoir in Guantao Formation of Gudao Oilfield. Acta Petrolei Sinica, 27(3): 100-103] [17] 孙天建,穆龙新,吴向红,赵国良,徐锋,王振军,覃志,方子奇. 2014. 砂质辫状河储层构型表征方法: 以苏丹穆格莱特盆地Hegli油田为例. 石油学报, 35(4): 715-724. [Sun T J,Mu L X,Wu X H,Zhao G L,Xu F,Wang Z J,Tan Z,Fang Z Q.2014. A quantitative method for architecture characterization of sandy braided-river reservoirs: taking Hegli oilfield of Muglad Basin in Sudan as an example. Acta Petrolei Sinica, 35(4): 715-724] [18] 谭程鹏,于兴河,李胜利,李顺利,陈彬滔,单新,王志兴. 2014. 辫状河—曲流河转换模式探讨: 以准噶尔盆地南缘头屯河组露头为例. 沉积学报, 32(3): 450-458. [Tan C P,Yu X H,Li S L,Li S L,Chen B T,Shan X,Wang Z X.2014. Discussion on the model of braided river transform to meandering river: as an example of Toutunhe formation in southern Junggar Basin. Acta Sedimentologica Sinica, 32(3): 450-458] [19] 王敏,穆龙新,赵国良,王喻雄. 2017. 分汊与游荡型辫状河储层构型研究: 以苏丹FN油田为例. 地学前缘, 24(2): 246-256. [Wang M,Mu L X,Zhao G L,Wang Y X.2017. Architecture analysis of reservoirs in branching-and wandering-based braided rivers: taking FN field,Sudan as an example. Earth Science Frontiers, 24(2): 246-256] [20] 肖毅,杨研,邵学军. 2012. 基于尖点突变模式的河型分类及转化判别. 清华大学学报(自然科学版), 52(6): 753-758. [Xiao Y,Yang Y,Shao X J.2012. Cusp catastrophe model for alluvial channel regimes and classification of channel patterns. Journal of Tsinghua University(Science and Technology), 52(6): 753-758] [21] 徐安娜,穆龙新,裘怿楠. 1998. 我国不同沉积类型储集层中的储量和可动剩余油分布规律. 石油勘探与开发, 25(5): 57-60,5-6,12-13. [Xun A N,Mu L X,Qiu Y N.1998. Distribution pattern of OOIP and remaining mobile oil in different types of sedimentary reservoir of China. Petroleum Exploration and Development, 25(5): 57-60,5-6,12-13] [22] 于兴河,马兴祥,穆龙新,贾爱林. 2004. 辫状河储层地质模式及层次界面分析. 北京: 石油工业出版社,1-207. [Yu X H,Ma X X,Mu L X,Jia A L.2004. Geological Model and Hierarchical Interface Analysis of Braided River Reservoir. Beijing: Petroleum Industry Press,1-207] [23] 张昌民,朱锐,赵康,胡威,尹艳树,李少华,尹太举. 2017. 从端点走向连续: 河流沉积模式研究进展述评. 沉积学报, 35(5): 926-944. [Zhang C M,Zhu R,Zhao K,Hu W,Yin Y S,Li S H,Yin T J.2017. From end member to continuum: review of fluvial facies model research. Acta Sedimentologica Sinica, 35(5): 926-944] [24] 张可,吴胜和,冯文杰,郑定业,喻宸,刘照玮. 2018. 砂质辫状河心滩坝的发育演化过程探讨: 沉积数值模拟与现代沉积分析启示. 沉积学报, 36(1): 81-91. [Zhang K,Wu S H,Feng W J,Zheng D Y,Yu C,Liu Z W.2018. Discussion on evolution of bar in sandy braided river: insights from sediment numerical simulation and modern bar. Acta Sedimentologica Sinica, 36(1): 81-91] [25] Ashmore P E.1982. Laboratory modelling of gravel braided stream morphology. Earth Surface Processes and Landforms, 7(3): 201-225. [26] Ashworth P J,Best J L,Jones M.2004. Relationship between sediment supply and avulsion frequency in braided rivers. Geology, 32: 21-24. [27] Best J L,Ashworth P J,Bristow C S,Roden J.2003. Three-dimensional sedimentary architecture of a large,mid-channel sand braid bar,Jamuna River,Bangladesh. Journal of Sedimentary Research, 73(4): 516-530. [28] Best J L,Bristow C S.1993. Braided Rivers. London: Geological Society Publishing House,Special Publication 75,419. [29] Bridge J S,Lunt I A.2006. Depositional models of braided rivers,In: Sambrook Smith G H,Best J L,Bristow C S,Petts G E(eds). Braided Rivers: Process,Deposits,Ecology and Management. Oxford: International Association of Sedimentologists Special Publication 36,11-50. [30] Brierley G J.1989. River planform facies models: the sedimentology of braided,wandering and meandering reaches of the Squamish River,British Columbia. Sedimentary Geology, 61: 17-35. [31] Brierley G J,Hickin E J.1985. The downstream gradation of particle sizes in the Squamish River,British Columbia. Earth Surface Processes and Landforms, 10: 597-606. [32] Cant D J,Walker R G.1976. Development of a braided fluvial facies model for the Devonian Battery Point Sandstone,Quebec. Canadian Journal of Earth Science, 13: 102-119. [33] Cant D J,Walker R G.1978. Fluvial processes and facies sequences in the sandy braided South Saskatchewan River. Canadian Sedimentology, 25: 625-648. [34] Carling P A,Gupta N,Atkinson P M,He H Q.2016. Criticality in the planform behavior of the Ganges River meanders. Geology, 44: 859-862. [35] Castelltort S.2018. Empirical relationship between river slope and the elongation of bars in braided rivers: a potential tool for paleoslope analysis from subsurface data. Marine and Petroleum Geology, 96: 544-550. [36] Colombera L,Mountney N P,McCaffrey W D.2015. A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: implications for sequence stratigraphy. Geology, 43(4): 283-286. [37] Crosato A,Mosselman E.2009. Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resources Research, 45: 1-14. [38] Cross T A.2000. Stratigraphic controls on reservoir attributes in continental strata. Earth Science Frontiers, 7(4): 322-350. [39] Eaton B C,Millar R G,Davidson S.2010. Channel patterns: braided,anabranching,and single-thread. Geomorphology, 120(3-4): 353-364. [40] Fielding C R,Alexander J,Allen J P.2018. The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sedimentary Geology, 365: 1-20. [41] Galloway W E,Hobday D K.1996. Terrigenous clastic depositional systems: applications to fossil fuel and groundwater resources. Berlin: Springer-Verlag,489. [42] Gibling M R.2006. Width and thickness of fluvial channel bodies and valley fills in the geological record: a literature compilation and classification. Journal of Sedimentary Research, 76: 731-770. [43] Hansford M R,Plink-Björklund P.2020. River discharge variability as the link between climate and fluvial fan formation. Geology, 48(10): 952-6. [44] Jerolmack D J,Mohrig D.2007. Conditions for branching in depositional rives. Geology, 35: 463-466. [45] Langbein W B,Schumm S A.1958. Yield of sediment in relation to mean annual precipitation. Transactions-American Geophysical Union, 39: 1076-1084. [46] Li W,Colombera L,Yue D L,Mountney N P.2023. Controls on the morphology of braided rivers and braid bars: an empirical characterization of numerical models. Sedimentology, 70: 259-279. [47] Li S L,Yu X H,Chen B T,Li S L.2015. Quantitative characterization of architecture elements and their response to base-level change in a sandy braided fluvial system at a mountain front. Journal of Sedimentary Research, 85(10): 1258-1274. [48] Lunt I A,Bridge J S,Tye R S.2004. A quantitative,three-dimensional depositional model of gravelly braided rivers. Sedimentology, 51(3): 377-414. [49] Miall A D.1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Review, 22: 261-308. [50] Miall A D.1991. Stratigraphic sequences and their chronostratigraphic correlation. Journal of Sedimentary Petrology, 61: 497-505. [51] Miall A D.2002. Architecture and sequence stratigraphy of pleistocene fluvial systems in the Malay Basin,based on seismic time-slice analysis. AAPG Bulletin, 86(7): 1201-1216. [52] Miall A D.2010. The Geology of Stratigraphic Sequences,2nd Ed. Berlin: Springer-Verlag,522. [53] Naseer M T,Asim S.2017. Detection of Cretaceous incised-valley shale for resource play,Miano gas field,SW Pakistan: spectral decomposition using continuous wavelet transform. Journal of Asian Earth Sciences, 147: 358-377. [54] Nicholas A P,Sambrook Smith G H,Amsler M L,Ashworth P J,Best J L,Hardy R J,Lane S N,Orfeo O,Parsons D R,Reesink A J H,Sandbach S D,Simpson C J,Szupiany R N.2016. The role of discharge variability in determining alluvial stratigraphy. Geology, 44(1): 3-6. [55] Nicholas A P,Aalto R E,Sambrook Smith G H,Schwendel A C.2018. Hydrodynamic controls on alluvial ridge construction and avulsion likelihood in meandering river floodplains. Geology, 46(7): 639-642. [56] Sambrook Smith G H.2006. Braided Rivers: Process,Deposits,Ecology and Management. International Association of Sedimentologists,Oxford: Blackwell,Special Publication 36,390. [57] Sambrook Smith G H,Best J L,Bristow C S,Petts G E.2006. Braided Rivers: Process,Deposits,Ecology and Management. Oxford: Blackwell, 1-390. [58] Schumm S A.2005. River Variability and Complexity,1st Ed. Cambridge University Press,New York. [59] Schuurman F,Kleinhans M G.2015. Bar dynamics and bifurcation evolution in a modelled braided sand-bed river. Earth Surface Processes and Landforms, 40(10): 1318-1333. [60] Schuurman F,Marra W A,Kleinhans M G.2013. Physics-based modeling of large braided sand-bed rivers: bar pattern formation,dynamics,and sensitivity. Journal of Geophysical Research: Earth Surface, 118(4): 2509-2527. [61] Shanley K W,McCabe P J.1994. Perspectives on the Sequence Stratigraphy of Continental Strata. AAPG Bulletin, 78(4): 544-68. [62] Sichingabula H M.1986. Character and causes of channel changes on the Squamish River,southwestern British Columbia. Thesis of Simon Fraser University,156. [63] Smith N D.1974. Sedimentology and bar formation in the Upper Kicking Horse River,a braided outwash stream. The Journal of Geology, 82(2): 205-223. [64] Sullivan K B,Mcbride E F,Elfenbein C.1991. Diagenesis of sandstones at shale contacts and diagenetic heterogeneity,Frio Formation,Texas. AAPG Bulletin, 75(1): 121-138. [65] Temmerman S,Bouma T J,Wagoner de Koppel J,Wagoner der Wal D,De Vries M B,Herman P M J.2007. Vegetation causes channel erosion in a tidal landscape. Geology, 35(7): 631-634. [66] van den Berg J H.1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology, 12: 259-279. [67] Williams R D,Brasington J,Hicks M,Measures R,Rennie C D,Vericat D.2013. Hydraulic validation of two-dimensional simulations of braided river flow with spatially continuous aDcp data. Water Resources Research, 49(9): 5183-5205. [68] Yao Z Q,Yu X H,Shan X,Li S L,Li S L,Li Y L,Tan C P,Chen H L.2018. Braided-meandering system evolution in the rock record: Implications for climate control on the Middle-Upper Jurassic in the southern Junggar Basin,north-west China. Geological Journal, 53: 2710-2731. |