[1] 陈吉涛. 2020. 软沉积物变形构造研究进展. 地层学杂志, 44(1): 64-75. [Chen J T. 2020. Research progress of soft-sediment deformation structures. Journal of Stratigraphy, 44(1): 64-75] [2] 杜远生,余文超. 2017. 地震和非地震引发的软沉积物变形. 古地理学报, 19(1): 65-72. [Du Y S,Yu W C. 2017. Earthquake-caused and non-earthquake-caused soft-sediment deformations. Journal of Palaeogeography(Chinese Edition), 19(1): 65-72] [3] 方欣华,杜涛. 2004. 海洋内波基础和中国海内波. 山东青岛: 中国海洋大学出版社,1-123. [Fang X H,Du T. 2004. Fundamentals of oceanic internalwaves and internal waves in the China Seas. Shandong Qingdao: China Ocean University Press,1-123] [4] 冯增昭. 1994. 沉积岩石学(第二版).北京: 石油工业出版社,87-88. [Feng Z Z. 1994. Sedimentary Petrology(second edition). Beijing: Petroleum Industry Press,87-88] [5] 冯增昭,鲍志东,郑秀娟,王媛. 2017. 中国软沉积物变形构造及地震岩研究简评. 古地理学报, 19(1): 7-12. [Feng Z Z,Bao Z D,Zheng X J,Wang Y. 2017. Researches of soft-sediment deformation structures and seismites in China: a brief review. Journal of Palaeogeography(Chinese Edition), 19(1): 7-12] [6] 傅力浦,胡云绪,张子福,王树洗. 1993. 鄂尔多斯中、上奥陶统沉积环境的生物标志. 西北地质科学, 14(2): 1-88. [Fu L P,Hu Y X,Zhang Z F,Wang S X. 1993. The mark on the ecology of sedimentarial environment in Middle and Upper Ordovician at Ordos Basin. Northwest Geoscience, 14(2): 1-88] [7] 黄宝春,朱日祥. 1996. 华北地块早古生代古地磁结果的大地构造意义. 地球物理学报,39(增刊): 166-172. [Huang B C,Zhu R X. 1996. Tectonic implications of early Paleozoic paleomagnetic resuls in North China Block. Acta Geophysica Sinica,39(suppl.): 166-172] [8] 高振中,罗顺社,何幼斌,张吉森. 1995. 鄂尔多斯西缘奥陶纪海底扇沉积体系. 石油与天然气地质, 16(2): 119-125. [Gao Z Z,Luo S S,He Y B,Zhang J S. 1995. Ordovician submarine fan systems in west margin of Ordos. Oil & Gas Geology, 16(2): 119-125] [9] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报,33(增刊2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H. 2012. Equence lithofacies paleogeography of the Ordovician in Ordos basin,China. Acta Petrolei Sinica,33(suppl. 2): 95-109] [10] 晋慧娟,孙明良,李育慈. 2004. 内蒙古桌子山中奥陶统的“特殊”浊积岩系. 沉积学报, 23(1): 34-40. [Jin H J,Sun M L,Li Y C. 2004. The “special” turbidite measure of the Middle Ordovician Series in Zhuozishan area,Inner Mongolia. Acta Sedimentologica Sinica, 23(1): 34-40] [11] 景秀春,周洪瑞,王训练,杨志华,房强,王振涛,樊杰. 2020. 华北板块奥陶纪牙形石生物地层研究回顾及在西北缘区新进展. 地学前缘, 27(6): 199-212. [Jing X C,Zhou H R,Wang X L,Yang Z H,Fang Q,Wang Z T,Fan J. 2020. A review on Ordovician conodont biostratigraphy of the North China Plate and new research advances on its northwestern margin. Earth Science Frontiers, 27(6): 199-212] [12] 李华,何幼斌,黄伟,刘朱睿鸷,张锦. 2016. 鄂尔多斯盆地南缘奥陶系平凉组等深流沉积. 古地理学报, 18(4): 631-642. [Li H,He Y B,Huang W,Liu Z R Z,Zhang J. 2016. Contourites of the Ordovician Pingliang Formationin southern margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 18(4): 631-642] [13] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X. 2018. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 43(6): 2149-2159] [14] 李日辉. 1994. 桌子山中奥陶世公乌素组等积岩的确认及沉积环境. 石油与天然气地质, 15(3): 235-240. [Li R H. 1994. Identification of contourites in Middle Ordovician Gongwushu Formation,Zhuozishan,and depositional environment. Oil & Gas Geology, 15(3): 235-240] [15] 李三忠,赵淑娟,李玺瑶,曹花花,刘鑫,郭晓玉,肖文交,赖绍聪,闫臻,李宗会,于胜尧,兰浩圆. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609-2627. [Li S Z,Zhao S J,Li X Y,Cao H H,Liu X,Guo X Y,Xiao W J,Lai S C,Yan Z,Li Z H,Yu S Y,Lan H Y. 2016. Proto-Tehtys Ocean in East Asia(I): northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609-2627] [16] 李向东. 2013. 关于深水环境下内波、内潮汐沉积分类的探讨. 地质论评, 59(6): 1097-1109. [Li X D. 2013. Proposed classification of internal-wave and internal-tide deposits in deep-water environment. Geological Review, 59(6): 1097-1109] [17] 李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1305. [Li X D,Chen H Y,Chen H D. 2019. Deep-water combined-flow deposits of the upper ordovician Lashenzhong Formation in Zhuozishan area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1305] [18] 李向东,陈海燕. 2020a. 深水环境下古水流方向分析和阻塞浊流沉积的识别: 以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41(11): 1348-1365. [Li X D,Chen H Y. 2020a. Palaeocurrent direction analysis and ponded turbidity currents recognition in deep-water environment: a case study of the Upper Ordovician Lashenzhong Formation in Zhuozishan area,Ordos Basin. Acta Petrolei Sinica, 41(11): 1348-1365] [19] 李向东,陈海燕. 2020b. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积. 地球科学, 45(4): 1266-1280. [Li X D,Chen H Y. 2020b. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 45(4): 1266-1280] [20] 李向东. 2021. 地层记录中内波、内潮汐沉积研究进展及其页岩气勘探意义. 中南大学学报(自然科学版), 52(10): 3513-3528. [Li X D. 2021. Advances in research of geological internal-wave and internal-tide deposits and their exploration significance in shale gas. Journal of Central South University(Science and Technology), 52(10): 3513-3528] [21] 李向东,魏泽昳,陈洪达. 2022. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报,https://doi.org/10.19762/j.cnki.dizhixuebao.2022019. [Li X D,Wei Z Y,Chen H D. 2022. Genetic analysis of internal-wave and internal-tide deposits inUpper Ordovician Lashenzhong Formation,western Ordos basin. Acta Geologica Sinica,https://doi.org/10.19762/j.cnki.dizhixuebao.2022019] [22] 李勇,钟建华,邵珠福,毛毳. 2012. 软沉积变形构造的分类和形成机制研究. 地质论评, 58(5): 829-838. [Li Y,Zhong J H,Shao Z F,Mao C. 2012. An overview on the classification and genesis of soft-sediment deformation structure. Geological Review, 58(5): 829-838] [23] 刘训,游国庆. 2015. 中国的板块构造区划. 中国地质, 42(1): 1-17. [Liu X,You G Q. 2015. Tectonic regional subdivision of China in the light of plate theory. Geology in China, 42(1): 1-17] [24] 欧特尔 H,等. 2002. 普朗特流体力学基础. 朱自强,钱翼稷,李宗瑞,译. 2008. 北京: 科学出版社, 333-361. [Oertel H, et al. 2002. Prandtl-Essentials of Fluid Mechanics.Zhu Z Q,Qian Y J,Li Z R,translation. 2008. Beijing: Science Press, 333-361] [25] 吴东旭,周进高,吴兴宁,丁振纯,于洲,王少依,李维岭,王淑敏. 2018. 鄂尔多斯盆地西缘早中奥陶世岩相古地理研究. 高校地质学报, 24(5): 747-760. [Wu D X,Zhou J G,Wu X N,Ding Z C,Yu Z,Wang S Y,Li W L,Wang S M. 2018. Lithofacies and palaeogeography of the Early-Middle Ordovician in the Western Ordos Basin. Geological Journal of China Universities, 24(5): 747-760] [26] 肖彬,何幼斌,罗进雄,苑伯超. 2014. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积. 地质论评, 60(2): 321-331. [Xiao B,He Y B,Luo J X,Yuan B C. 2014. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia. Geological Review, 60(2): 321-331] [27] 肖晖,赵靖舟,熊涛,吴伟涛,米敬奎,刘素彤. 2017. 鄂尔多斯盆地古隆起西侧奥陶系烃源岩评价及成藏模式. 石油与天然气地质, 38(6): 1087-1097. [Xiao H,Zhao J Z,Xiong T,Wu W T,Mi J K,Liu S T. 2017. Evaluation of Ordovician source rocks and natural gas accumulation patterns in west flank of a paleo-uplift,Ordos Basin. Oil & Gas Geology, 38(6): 1087-1097] [28] 张进,李锦轶,刘建峰,李岩峰,曲军峰,冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28(9): 2912-2934. [Zhang J,Li J Y,Liu J F,Li Y F,Qu J F,Feng Q W. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912-2934] [29] 张建新,于胜尧,李云帅,喻星星,林宜慧,毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金—祁连—柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554. [Zhang J X,Yu S Y,Li Y S,Yu X X,Lin Y H,Mao X H. 2015. Subduction,accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554] [30] 张元动,詹仁斌,甄勇毅,王志浩,袁文伟,方翔,马譞,张俊鹏. 2019. 中国奥陶纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 66-92. [Zhang Y D,Zhan R B,Zhen Y Y,Wang Z H,Yuan W W,Fang X,Ma X,Zhang J P. 2019. Ordovician integrative stratigraphy and timescale of China. Science China Earth Sciences, 62(1): 61-88] [31] 钟建华,宋冠先,倪良田,孙宁亮,郝兵,葛毓柱,薛纯琦,孙景耀,刘闯,曹梦春. 2019. 黄河下游与黄河三角洲现代非地震变形层理的研究. 沉积学报, 37(2): 239-253. [Zhong J H,Song G X,Ni L T,Sun N L,Hao B,Ge Y Z,Xue C Q,Sun J Y,Liu C,Cao M C. 2019. Modern non-seismically induced deformation bedding in the Lower Reaches of the Yellow River and Yellow River Delta. Acta Sedimentologica Sinica, 37(2): 239-253] [32] Al-Mufti O N,Arnott R W C. 2020. The origin and significance of convolute lamination and pseudonodules in anancient deep-marine turbidite system: from deposition to diagenesis. Journal of Sedimentary Research, 90(5): 480-492. [33] Alsop G I,Weinberger R,Marco S,Levi T. 2019. Identifying soft-sediment deformation in rocks. Journal of Structural Geology, 125: 248-255. [34] Arnott R W C. 1993. Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member,North-central Montana: evidence of combined-flow sedimentation. Journal of Sedimentary Research, 63(3): 488-494. [35] Cowan E A,Christoffersen P,Powell R D. 2012. Sedimentological signature of a deformable bed preserved beneath an ice stream in a Late Pleistocene glacial sequence,Ross Sea,Antarctica. Journal of Sedimentary Research, 82(4): 270-282. [36] Gao Z Z,Eriksson K A,He Y B,Luo S S,Guo J H. 1998. Deep-water traction current deposits: a study of internal tides,internal waves,contour currents and their deposits.Beijing and New York: Science Press,Utrecht and Tokyo: VSP international Science Publishers: 1-123. [37] Gladstone C,Mcclelland H L O,Woodcock N H,Pritchard D,Hunt J E. 2018. The formation of convolute lamination in mud-rich turbidites.Sedimentology, 65(5): 1800-1825. [38] He Y B,Luo J X,Li X D,Gao Z Z,Wen Z. 2011. Evidence of internal-wave and internal-tide depositsin the Middle Ordovician Xujiajuan Formation of the Xiangshan Group,Ningxia,China.Geo-Marine Letters, 31(5-6): 509-523. [39] Korneva I,Tondi E,Jablonska D,Celma C D,Alsop I,Agosta F. 2016. Distinguishing tectonically-and gravity-driven synsedimentary deformation structures along the Apulian platform margin(Gargano Promontory,southern Italy).Marine and Petroleum Geology, 73: 479-491. [40] Li W J,Chen J T,Hakim A J,Myrow P M. 2022. Middle Ordovician mass-transport deposits from western Inner Mongolia,China: mechanisms and implications for basin evolution.Sedimentology, 69(3): 1301-1338. [41] Liu X L,Jia Y G,Zheng J W,Wen M Z,Shan H X. 2017. An experimental investigation of wave-induced sediment responses in a natural silty seabed: new insights into seabed stratification.Sedimentology, 64(2): 508-529. [42] Lomas S A. 1999. A Lower Cretaceous clastic slope succession,Livingston Island,Antarctica: sand-body characteristics,depositional processes and implications for slope apron depositional models.Sedimentology, 46(3): 477-504. [43] Marchès E,Mulder T,Gonthier E,Cremer M,Hanquiez V,Garlan T,Lecroart P. 2010. Perched lobe formation in the Gulf of Cadiz: interactions between gravity processes and contour currents(Algarve Margin,Southern Portugal).Sedimentary Geology, 229(3): 81-94. [44] Moretti M,Sabato L. 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin(Southern Italy): seismic shock vs. overloading.Sedimentary Geology, 196: 31-35. [45] Mörz T,Karlik E A,Kreiter S,Kopf A. 2007. An experimental setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures.Sedimentary Geology, 196: 251-267. [46] Nie S H,Jiang Q,Cui L,Zhang C K.2020. Investigation on solid-liquid transition of soft mud under steady and oscillatory shear loads.Sedimentary Geology, 397: 105570,https://doi.org/10.1016/j.sedgeo.2019.105570. [47] Oliveira C M M,Hodgson D M,Flint S S. 2009. Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin,South Africa.Sedimentology, 56(5): 1201-1225. [48] Ortner H,Kilian S. 2016. Sediment creep on slopes in pelagic limestones: Upper Jurassic of Northern Calcareous Alps,Austria.Sedimentary Geology, 344: 350-363. [49] Owen G,Moretti M,Alfaro P. 2011. Recognising triggers for soft-sediment deformation: crrent understanding and future directions.Sedimentary Geology, 235: 133-140. [50] Patacci M,Haughton P D W,Mccaffrey W D. 2015. Flow behavior of ponded turbidity currents. Journal of Sedimentary Research, 85(8): 885-902. [51] Rana N,Sati S P,Sundriyal Y,Juyal N. 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley,Garhwal Himalaya,India.Sedimentary Geology, 344: 263-276. [52] Spence G H,Tucker M E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review.Sedimentary Geology, 112: 163-193. [53] Stegmann S,Sultan N,Kopf A,Apprioual R,Pelleau P. 2011. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice,France.Marine Geology, 280: 168-181. [54] Sumer B M,Hatipoglu F,Fredsøe J,Sumer S K. 2006. The sequence of sediment behaviour during wave-induced liquefaction.Sedimentology, 53(3): 611-629. [55] Sumner E J,Amy L A,Talling P J. 2008. Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78(8): 529-547. [56] Sun J P,Dong Y P. 2020. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses.Basin Research, 32(6): 1413-1440. [57] Tinterri R,Magalhaes P M,Tagliaferri A,Cunha R S. 2016. Convolute laminations and load structures in turbidites as indicators offlow reflections and decelerations against bounding slopes: examples from the Marnoso-arenacea Formation(northern Italy)and Annot Sand stones(south eastern France).Sedimentary Geology, 344: 382-407. [58] Tsui Y,Helfrich S C. 1983. Wave-induced pore pressure in submergedsand layer. Journal of Geotechnical Engineering, 109: 603-618. [59] Walker R G. 1967. Turbidite sedimentary structures and their relationship to proximal and distal depositional environments. Journal of Sedimentary Petrology, 37(1): 25-43. [60] Wang Z,Fan R,Zong R,GongY M. 2021. Composition and spatiotemporal evolution of the mixed turbidite-contourite systems from the Middle Ordovician,in western margin of the North China Craton.Sedimentary Geology, 421: 105943,https://doi.org/10.1016/j.sedgeo.2021.105943. [61] Zhao X X,Coe R S,Liu C,ZhouY X. 1992. New Cambrianand Ordovician paleomagnetic poles for the North China Block and their paleogeographic implications. Journal of Geophysical Research,97(B2): 1767-1788. |