[1] 段超,李延河,魏明辉,杨云,侯可军,陈小丹,邹斌. 2014. 河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LA-MC-ICP-MS U-Pb年龄及其地质意义. 岩石学报, 30(1): 35-48. [Duan C,Li Y H,Wei M H,Yang Y,Hou K J,Chen X D,Zou B. 2014. U-Pb dating study of detrital zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit,North China Craton and its geological significances. Acta Petrologica Sinica, 30(1): 35-48] [2] 高林志,张传恒,尹崇玉,史晓颖,王自强,刘耀明,刘鹏举,唐烽,宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376. [Gao L Z,Zhang C H,Shi X Y,Wang Z Q,Liu Y M,Liu P J,Tang F,Song B. 2008. SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Old Land. Acta Geoscientica Sinica, 29(3): 366-376] [3] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z, Li S, Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: further constrains on the new subdivision of the Mesoproterozoic stratigraphy in the norther North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140] [4] 河北省地质矿产局. 1968. 高邑幅1︰200000 区域地质图: J-50-19. [Hebei-Bureau of Geology and Mineral Resources. 1968. Geological Map of Gaoyi: J-50-19, scale-1︰200,000] [5] 河北省地质矿产局. 1989. 河北省,北京市,天津市区域地质志. 北京: 地质出版社, 1-741. [Hebei Bureau of Geology and Mineral Resources. 1989. Regional Geology of Hebei Province,Beijing Municipality and Tianjin Municipality. Beijing: Geological Publishing House,1-741] [6] 刘典波,王小琳,张恒,石成龙. 2019. 华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义. 地学前缘, 26(3): 183-189. [Liu D B,Wang X L,Zhang H,Shi C L. 2019. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group,North China and the stratigraphic implications. Earth Science Frontiers, 26(3): 183-189] [7] 陆松年,李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22(1): 137-146. [Lu S N,Li H M. 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22(1): 137-146] [8] 史晓颖,王新强,蒋干清,刘典波,高林志. 2008. 贺兰山地区中元古代微生物席成因构造: 远古时期微生物群活动的沉积标识. 地质论评, 54(5): 577-586. [Shi X Y,Wang X Q,Jiang G Q,Liu D B,Gao L Z. 2008. Pervassive microbial mat colonization on Mesoproterozoic peritidal siliciclastic substrates: an example form the Huangqikou Formation(ca 1.6 Ga)in Helan Mountains,NW China. Geological Review, 54(5): 577-586] [9] 田辉,张健,李怀坤,苏文博,周红英,杨立公,相振群,耿建珍,刘欢,朱士兴,许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. [Tian H,Zhang J,Li H K,Su B W,Zhou H Y,Yang L G,Xiang Z Q,Geng J Z,Liu H,Zhu S X,Xu Z Q. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658] [10] 章敬若. 2016. 河北东焦群岩石学特征与大地构造意义. 中国地质大学(北京)硕士论文: 1-62. [Zhang J. 2016. The petrology and tectonic implication of the Dongjiao Group in Hebei. Masteral dissertation of China University of Geosciences(Beijing): 1-62] [11] 张拴宏,赵越,叶浩,胡健民,吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490. [Zhang S H,Zhao Y,Ye H,Hu J M,Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490] [12] Bekker A,Planavsky N J,Krapež B,Rasmussen B,Hofmann A,Slack J F,Rouxel O J,Konhauser K O. 2014. Iron formations: their origins and implications for ancient seawater chemistry. Treatise on Geochemistry. Elsevier, 12: 561-628. [13] Bose S,Chafetz H S. 2009. Topographic control on distribution of modern microbially induced sedimentary structures(MISS): a case study from Texas coast. Sedimentary Geology, 213(3-4): 136-149. [14] Cairns-Smith A G. 1978. Precambrian solution photochemistry,inverse segregation,and banded iron formations. Nature, 276(5690): 807-808. [15] Canfield D E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33: 1-36. [16] Canfield D E,Zhang S,Frank A B,Wang X,Wang H,Su J,Frei R. 2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1): 1-11. [17] Chan C S,Emerson D,Luther G W. 2016. The role of microaerophilic Fe-oxidizing microorganisms in producing banded iron formations. Geobiology, 14(5): 509-528. [18] Chu X,Zhang T,Zhang Q,Lyons T W. 2007. Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section,northern China: implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692. [19] Emerson D,Fleming E J,Mcbeth J M. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual review of microbiology, 64: 561-583. [20] Eren M,Kadir S. 1999. Colour origin of upper Cretaceous pelagic red sediments within the Eastern Pontides,northeast Turkey. International Journal of Earth Sciences, 88: 593-595. [21] Gao L Z,Zhang C H,Liu P J,Ding X Z,Wang Z Q,Zhang Y J. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446. [22] Hagadorn J W,Bottjer D J. 1999. Restriction of a late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios, 14(1): 73-85. [23] Kappler A,Pasquero C,Konhauser K O,Newman D K. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(Ⅱ)-oxidizing bacteria. Geology, 33(11): 865-868. [24] Köhler I,Konhauser K O,Papineau D,Bekker A,Kappler A. 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 4(1): 1-7. [25] Krapež B,Barley M E,Pickard A L. 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formations: sedimentological evidence from the early Paleoproterozoic Brockman Super sequence of Western Australia. Sedimentology, 50(5): 979-1011. [26] Lepp H,Goldich S S. 1964. Origin of Precambrian iron formations. Economic Geology, 59(6): 1025-1060. [27] Li C,Sheng G,Fu J,Yan Y. 2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic(1.73-0.85 Ga)sediments from the Jixian section,Yanshan Basin,North China. Precambrian Research, 125(3-4): 337-356. [28] Li H,Lu S,Su W,Xiang Z,Zhou H,Zhang Y. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. [29] Li X H,Li W X,Li Z X,Liu Y. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang,South China: a major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341-357. [30] Lin Y T,Tang D J,Shi X Y,Zhou X Q,Huang K. 2019. Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 76: 1-18. [31] Little C,Johannessen K C,Bengtson S,Chan C S,Bekker A. 2021. A late Paleoproterozoic(1.74 Ga)deep-sea,low-temperature,iron-oxidizing microbial hydrothermal vent community from Arizona,USA. Geobiology, 19(3): 228-249. [32] Lu S N,Yang C L,Li H K,Li H M. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. [33] Lu S,Zhao G,Wang H,Hao G. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research, 160(1-2): 77-93. [34] Noffke N. 1998. Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits(MellumIsland,southern North Sea). Geology, 26(10): 879-882. [35] Noffke N,Gerdes G,Klenke T,Krumbein W E. 2001. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656. [36] Noffke N,Gerdes G,Klenke T. 2003. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems(siliciclastic,evaporitic salty,and evaporitic carbonate). Earth-Science Reviews, 62(1-2): 163-176. [37] Noffke N,Beukes N,Gutzmer J,Hazen R. 2006. Spatial and temporal distribution of microbially induced sedimentary structures: a case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup,South Africa. Precambrian Research, 146(1-2): 35-44. [38] Noffke N,Beukes N,Bower D,Hazen R M,Swift D J P. 2008. An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section,2.9 Ga Pongola Supergroup,South Africa. Geobiology, 6(1): 5-20. [39] Odin G S,Matter A. 1981. De glauconiarum origin. Sedimentology, 28(5): 611-641. [40] Pflüger F,Gresse P G. 1996. Microbial mat chips: a non-actualistic sedimentary structure. Sedimentary Geology, 102(3-4): 263-274. [41] Planavsky N J,Rouxel O,Bekker A,Shapiro R,Fralick P,Knudsen A. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters, 286(1-2): 230-242. [42] Planavsky N J,McGoldrick P,Scott C T,Li C,Reinhard C T,Kelly A E,Chu X,Bekker A,Love G D,Lyons T W. 2011. Widespread iron-rich conditions in the mid-Proterozoic Ocean. Nature, 477: 448-451. [43] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainbird R H,Johnson T,Fischer W W,Lyons T W. 2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638. [44] Posth N R,Canfield D E,Kappler A. 2014. Biogenic Fe(Ⅲ) minerals: from formation to diagenesis and preservation in the rock record. Earth-Science Reviews, 135: 103-121. [45] Poulton S W,Canfield D E. 2011. Ferruginous conditions: a dominant feature of the ocean through earth's history. Elements, 7: 107-112. [46] Rasmussen B,Krapež B,Meier D B. 2014. Replacement origin for hematite in 2.5 Ga banded iron formation: evidence for post depositional oxidation of iron-bearing minerals. Geological Society of America Bulletin, 126(3-4): 438-446. [47] Rasmussen B,Muhling J R. 2020. Hematite replacement and oxidative overprinting recorded in the 1.88 Ga gunflint iron formation,Ontario,Canada. Geology, 48(7): 688-692. [48] Schieber J. 1998. Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup,Montana,USA. Sedimentary Geology, 120(1-4): 105-124. [49] Schieber J. 1999. Microbial mats in terrigenous clastic: the challenge of identification in the rock record. Palaios, 14(1): 3-12. [50] Schieber J,Bose P K,Eriksson P G,Banerjee S,Alterman W,Catuneau O. 2007. Atlas of Microbial Mat Features Preserved within the Clastic Rock Record. Amsterdam: Elsevier, 288. [51] Tang D J,Shi X Y,Jiang G Q,Wang X Q. 2012. Morphological association of microbially induced sedimentary structures(MISS)as a paleoenvironmental indicator: an example from the Proterozoic succession of the southern North China Platform. Microbial mats in siliciclastic depositional systems through time. SEPM Special Publication, 101: 163-175. [52] Tang D J,Shi X Y,Ma J B,Jiang G,Zhou X Q,Shi Q. 2017. Formation of shallow-water glaucony in weakly oxygenated Precambrian Ocean: an example from the Mesoproterozoic Tieling formation in north China. Precambrian Research, 294: 214-229. [53] Tang D J,Shi X Y,Jiang G Q,Wu T,Ma J B,Zhou X Q. 2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15. [54] Tang D J,Ma J B,Shi X Y,Lechte M,Zhou X Q. 2020. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. [55] Wei B L,Tang D J,Shi X Y,Lechte M,Zhou L,Zhou X Q,Song H Y. 2021. A pulsed oxygenation in terminal Paleoproterozoic Ocean: Evidence from the transition between the Chuanlinggou and Tuanshanzi Formations,North China. Geochemistry Geophysics Geosystems, 22(5): e2020GC009612. [56] Xing L D,Lockley M G,Tang D J,Klein H,Peng G,Ye Y,Hao B. 2019. Early Jurassic basal sauropodomorph dominated tracks from Guizhou,China: morphology,ethology,and paleoenvironment. Geoscience Frontiers, 10(1): 229-240. [57] Zhang S,Li Z X,Evans D A D,Wu H,Li H,Dong J. 2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353: 145-155. [58] Zhao G,Sun M,Wilde S A,Li S. 2003. Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton. Gondwana Research, 6(3): 417-434. [59] Zhao G,Li S,Sun M,Wilde S A. 2011. Assembly,accretion,and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356. |