[1] 陈代钊,汪建国,严德天,韦恒叶,遇昊,王清晨. 2011. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异. 地质科学, 46(1): 5-26. [Chen D Z,Wang J G,Yan D T,Wei H Y,Yu H,Wang Q C.2011. Environmental dynamics of organic accumulationfor the principal Paleozoic source rocks on Yangtze block. Chinese Journal of Geology, 46(1): 5-26] [2] 陈洪德,黄福喜,徐胜林,赵立群,滑心爽. 2009. 中上扬子地区碳酸盐岩储层发育分布规律及主控因素. 矿物岩石, 29(4): 7-15. [Chen H D,Huang F X,Xu S L,Zhao L Q,Hua X S.2009. Distribution rule and main controllong factors of the carbonate rock reservoirs in the Middle and Upper Yangtze Region. Journal of Mineralogy and Petrology, 29(4): 7-15] [3] 陈旭,樊隽轩,王文卉,王红岩,聂海宽,石学文,文治东,陈冬阳,李文杰. 2017. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式. 中国科学: 地球科学,47(6): 720-732. [Chen X,Fan J X,Wang W H,Wang H Y,Nie H K,Shi X W,Wen Z D,Chen D Y,Li W J.2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing,Central China. Science China: Earth Sciences, 60: 1133-1146] [4] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G.2003. CIA(Chemical Index of Alteration)and its application in the Neoproterozoic Clastic rocks. Earth Science Frotiers, 10(4): 539-544] [5] 郭旭升,胡东风,文治东,刘若冰. 2014. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组—龙马溪组为例. 中国地质, 41(3): 893-901. [Guo X S,Hu D F,Wen Z D,Liu R B.2014. Major factors controlling the accumulation and high prouductivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formations of Jiaoshiba area. Geology in China, 41(3): 893-901] [6] 何登发,李德生,张国伟,赵路子,樊春,鲁人齐,文竹. 2011. 四川多旋回叠合盆地的形成与演化. 地质科学, 46(3): 589-606. [He D F,Li D S,Zhang G W,Zhao L Z,Fan C,Lu R Q,Wen Z.2011. Formation and evolution of multi-cycle superposed Sichuan Basin,China. Chinese Journal of Geology, 46(3): 589-606] [7] 黄福喜,陈洪德,侯明才,钟怡江,李洁. 2011. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式. 岩石学报, 27(8): 2299-2317. [Huang F X,Chen H D,Hou M C,Zhong Y J,Li J.2011. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian(Cambrian-Silurian). Acta Petrologica Sinica, 27(8): 2299-2317] [8] 黄云飞,张昌民,朱锐,易雪斐,瞿建华,唐勇. 2017. 准噶尔盆地玛湖凹陷晚二叠世至中三叠世古气候、物源及构造背景. 地球科学, 42(10): 1736-1749. [Huang Y F,Zhang C M,Zhu R,Yi X F,Qu J H,Tang Y.2017. Palaeoclimatology,provenance and tectonic setting during Late Permian to Middle Triassic in Mahu Sag,Junggar Basin,China. Earth Science, 42(10): 1736-1749] [9] 刘树根,马文辛,LUBA Jansa,黄文明,曾祥亮,张长俊. 2011. 四川盆地东部地区下志留统龙马溪组页岩储层特征. 岩石学报, 27(8): 2239-2252. [Liu S G,Ma W X,LUBA J,Huang W M,Zeng X L,Zhang C J.2011. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation,East Sichuan basin,China. Acta Petrologica Sinica, 27(8): 2239-2252] [10] 刘伟,许效松,冯心涛,孙媛媛. 2010. 中上扬子上奥陶统五峰组含放射虫硅质岩与古环境. 沉积与特提斯地质, 30(3): 65-70. [Liu W,Xu X S,Feng X T,Sun Y Y.2010. Radiolarian silicalites and palaeoenvironmental reconstruction for the Upper Ordovician Wufeng Formation in the Middle-Upper Yangtze area. Sedimentary Geology and Tethyan Geology, 30(3): 65-70] [11] 刘伟,许效松,余谦,闫剑飞,门玉澎,张海全. 2012. 中上扬子晚奥陶世赫南特期岩相古地理. 成都理工大学学报(自然科学版), 39(1): 32-39. [Liu W,Xu X S,Yu Q,Yan J F,Men Y P,Zhang H Q.2012. Lithofacies palaeography of the Late Ordovician Hirnantian in the Middle-Upper Yangtze region of China. Journal of Chengdu University of Technology(Natural Science Edition), 39(1): 32-39] [12] 隆轲,陈洪德,林良彪,徐胜林,程立雪. 2011. 四川盆地白垩纪构造层序、岩相古地理及演化. 地层学杂志, 35(3): 328-336. [Long K,Chen H D,Lin L B,Xu S L,Cheng L X.2011. Cretaceous tectonic sequence and litho-paleogeographic evolution in the Sichuan Basin. Journal of Stratigraphy, 35(3): 328-336] [13] 牟传龙,许效松. 2010. 华南地区早古生代沉积演化与油气地质条件. 沉积与特提斯地质, 30(3): 24-29. [Mou C L,Xu X S.2010. Sedimentary evolution and petroleum geology in South China during the Early Palaeozoic. Sedimentary Geoligy and Tethyan Geology, 30(3): 24-29] [14] 牟传龙,周恳恳,梁薇,葛祥英. 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探. 地质学报, 85(4): 1-7. [Mou C L,Zhou K K,Liang W,Ge X Y.2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration. Acta Geologica Sinica, 85(4): 1-7] [15] 戎嘉余. 1984. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响. 地层学杂志, 8(1): 19-29. [Rong J Y.1984. Ecostratigraphic evidence of the Upper Ordovician regressive sequences and the effect of glaciation. Journal of Stratigraphy, 8(1): 19-29] [16] 王清晨,严德天,李双建. 2008. 中国南方志留系底部优质烃源岩发育的构造—环境模式. 地质学报, 82(3): 289-297. [Wang Q C,Yan D T,Li S J.2008. Tectonic-environmental model of the Lower Silurian high-quality hydrocarbon source rocks from South China. Acta Geologica Sinica, 82(3): 289-297] [17] 汪泽成,赵文智,彭红雨. 2002. 四川盆地复合含油气系统特征. 石油勘探与开发, 29(2): 26-28. [Wang Z C,Zhao W Z,Peng H Y.2002. Characteristics of multi-source petroleum systems in Sichuan basin. Petroleum Exploration and Development,29(2): 26-28] [18] 许效松,万方,尹福光,陈明. 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64-68. [Xu X S,Wan F,Yin F G,Chen M.2001. Environment facies,ecological facies and diagenetic facies of Baota Formation,of Late Ordovician. Journal of Mineralogy and Petrology, 21(3): 64-68] [19] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [20] 严德天,王清晨,陈代钊,汪建国,王卓卓. 2008. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素. 地质学报, 82(3): 321-327. [Yan D T,Wang Q C,Chen D Z,Wang J G,Wang Z Z.2008. Sedimentary environment and development controls of the hydrocarbon sources beds: The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area. Acta Geologica Sinica, 82(3): 321-327] [21] 严德天,汪建国,王卓卓. 2009. 扬子地区上奥陶—下志留统生物钡特征及其古生产力意义. 西安石油大学学报: 自然科学版, 24(4): 16-19. [Yan D T,Wang J G,Wang Z Z.2009. Biogenetic barium distribution from the Upper Ordovician to Lower Silurian in the Yangtze area and its significance to paleoproductivity. Journal of Xi’an Shiyou University(Natural Science Edition), 24(4): 16-19] [22] 严德天,王清晨,陈代钊,汪建国,邱振. 2011. 扬子地区晚奥陶世碳酸盐台地淹没事件及其地质意义. 地质科学, 46(1): 42-51. [Yan D T,Wang Q C,Chen D Z,Wang J G,Qiu Z.2011. The Late Ordovician drowning of the Yangtze carbonate platform and its geologic significance. Chinese Journal of Geology, 46(1): 42-51] [23] 闫剑飞,余谦,刘伟,门玉澎. 2010. 中上扬子地区下古生界页岩气资源前景分析. 沉积与特提斯地质, 30(3): 96-103. [Yan J F,Yu Q,Liu W,Men Y P.2010. Perspectives of the Lower Palaeozoic shale gas resources in the middle upper Yangtze area. Sedimentary Geology and Tethyan Geology, 30(3): 96-103] [24] 余谦,牟传龙,张海全,谭钦银,许效松,闫剑飞. 2011. 上扬子北缘震旦纪—早古生代沉积演化与储层分布特征. 岩石学报, 27(3): 672-680. [Yu Q,Mou C L,Zhang H Q,Tan Q Y,Xu X S,Yan J F.2011. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic. Acta Petrologica Sinica, 27(3): 672-680] [25] 张春明,张维生,郭英海. 2012. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响. 地学前缘, 19(1): 136-145. [Zhang C M,Zhang W S,Guo Y H.2012. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou. Earth Science Frontiers, 19(1): 136-145] [26] 张金川,聂海宽,徐波,姜生玲,张培先. 2008. 四川盆地页岩气成藏地质条件. 天然气工业, 28(2): 151-156. [Zhang J C,Nie H K,Xu B,Jiang S L,Zhang P X.2008. Geological condition of Shale gas accumulation in Sichuan Basin. Natural Gas Industry, 28(2): 151-156] [27] Armstrong-Altrin J S.2015. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulfof Mexico and their application to Precambrian clastic sedimentaryrocks. International Geology Review, 57(11-12): 1444-1459. [28] Armstrong-Altrin J S,Lee Y I,Verma S P,Ramasamy S.2004. Geochemistry ofsandstonesfromthe Upper Miocene Kudankulam Formation,southern India: Implicationsfor provenance,weathering,and tectonic setting. Journal of Sedimentary Research, 74(2): 285-297. [29] Armstrong-Altrin J S,Lee Y I,Kasper-Zubillaga J J,Carranza-Edwards A,Garcia D,Eby G N,Balaram V,Cruz-Ortiz N L.2012. Geochemistry of beach sands along the westernGulf of Mexico,Mexico: Implication for provenance. Chemie der Erde-Geochemistry-Interdisciplinary Journal for Chemical Problems of the Geosciences and Geoecology, 72: 345-362. [30] Bhatia M R.1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627. [31] Bhatia M R.1985. Composition and classification of Paleozoic flysch mudrocks ofeastern Australia: Implications in provenance and tectonic setting interpretation.Sedimentary Geology, 41(2-4): 249-268. [32] Bhatia M R,Crook K A W.1986. Trace element characteristics of graywackesand tectonic setting discrimination of sedimentary basins.Contributions to Mineralogy and Petrology, 92(2): 181-193. [33] Brenchley P J,Marshall J D,Harper D A T,Buttler C J,Underwood C J.2006. A late Ordovician(Hirnantian)karstic surface in a submarine channel,recording glacioeustatic sea-level changes: Meifod,central Wales. Geological Journal, 41: 1-22. [34] Chen C,Mu C L,Zhou K K,Liang W,Ge X Y,Wang X P,Wang Q Y,Zheng B S.2016. The geochemical characteristics and factors controlling the organicmatter accumulation of the Late Ordovician-Early Silurian black shalein the Upper Yangtze Basin,South China. Marine and Petroleum Geology, 76: 159-175. [35] Chen X,Rong J Y,Fan J X,Zhan R B,Mitchell C E,Harper D A T,Melchin M J,Peng P A,Finney S C,Wang X F.2006. The Global Boundary Stratotype Section and Point(GSSP)for the base of the Hirnantian Stage(the uppermost of the Ordovician System). Episodes, 29: 183-196. [36] Cox R,Lowe D R,Cullers R L.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochimica Et Cosmochimica Acta, 59: 2919-2940. [37] Cullers R L.1995. The controls on the major-and trace-element evolutionof shales,siltstones and sandstones of Ordovician to Tertiary age in theWet Mountains region,Colorado,U.S.A. Chemical Geology, 123(1): 107-131. [38] Cullers R L,Podkovyrov V N.2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia,Russia: Implications for mineralogical and provenance control,and recycling. Precambrian Research, 104(1): 77-93. [39] Cullers R L,Podkovyrov V N.2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group,southeastern Russia. Precambrian Research, 117(3): 157-183. [40] Dickinson W R,Suczek C A.1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63: 2164-2182. [41] Fedo C M,Nesbitt H W,Young G M.1995. Unraveling the effects of Kmetasomatism in sedimentary rocks and paleosols with implicationsfor palaeoweathering conditions and provenance. Geology, 23: 921-924. [42] Fedo C M,Young G M,Nesbitt H W.1997. Paleoclimatic control on thecomposition of the Paleoproterozoic Serpent Formation,HuronianSupergroup,Canada: A greenhouse to icehouse transition. PrecambrianResearch, 86: 210-223. [43] Harnois L.1988. The CIW index: A new chemical index of weathering. Sedimentary Geology, 55: 319-322. [44] Hayashi K I,Fujisawa H,Holland H D,Ohomoto H.1997. Geochemistry of 1.9 Ga sedimentary rocks from northern Labrador,Canada.Geochimica Et Cosmochimica Acta, 61: 4115-4137. [45] Harper D A T,Hammarlund E U,Rasmussen C M Ø.2014. End Ordovician extinctions: A coincidence of causes. Gondwana Research, 25: 1294-1307. [46] Hofmann A.2005. The geochemistry of sedimentary rocks from the Fig Tree Group,Barberton greenstone belt: Implications for tectonic hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143: 23-49. [47] Huang H Y,He D F,Li Y Q,Li J,Zhang L.2018. Silurian tectonic-sedimentary setting and basin evolution in the Sichuanarea,southwest China: Implications for palaeogeographic reconstructions. Marine and Petroleum Geology, 92: 403-423. [48] Liu Z H,Algeo T J,Guo X S,Fan J X,Du X B,Lu Y C.2017. Paleo-environmental cyclicity in the Early Silurian Yangtze Sea(SouthChina): Tectonic or glacio-eustatic control?Palaeogeography Palaeoclimatology Palaeoecology, 466: 59-76. [49] Luo Q Y,Zhong N N,Dai N,Zhang W.2016. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations(Upper Ordovician-Lower Silurian)of southeastern Chongqing,China: Implications for gas shale evaluation. International Journal of Coal Geology, 153: 87-98. [50] McLennan S M.1989. Rare Earth Elements in sedimentary rocks: Influence of provenance and sedimentary processes. Review in Mineralogy, 21(1): 169-200. [51] McLennan S M,Taylor S R.1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1): 1-21. [52] McLennan S M,Hemming S R,McDaniel D K,Hanson,G N.1993. Geochemical approaches to sedimentation,provenance and tectonics. Special Paper of the Geological Society of America,284: 21-40. [53] Nesbitt H W,Young G M.1982. Early Proterozoic climates and platemotions inferred from major element chemistry of lutites. Nature, 299: 715-717. [54] Nesbitt H W,Young G M.1984. Prediction of some weathering trends of plutonic and volcanic rocksbased on thermodynamic and kinetic considerations.Geochimica et Cosmochimica Acta, 48(7): 1523-1534. [55] Nesbitt H W,Young G M.1989. Formation and diagenesis of weathering profiles. Journal of Geology, 97: 129-147. [56] Nesbitt H W,Young G M.1996. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulkcomposition and mineralogy. Sedimentology, 43(2): 341-358. [57] Purevjav N,Roser B P.2012. Geochemistry of Devonian-Carboniferous clastic Sediments of the Tsetserleg terrane,Hangay Basin,central Mongolia: Provenance,source weathering,and tectonic setting. Island Arc, 21(4): 270-287. [58] Ran B,Liu S G,Jansa L B,Sun W,Yang D,Ye Y H,Wang S Y,Luo C,Zhang X,Zhang C J.2015. Origin of the upper Ordovician-lower Silurian cherts of the Yangtze block,South China,and their palaeogeographic significance. Journal of Asian Earth Sciences, 108: 1-17. [59] Roser B P,Korsch R J.1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67(1): 119-139. [60] Sugitani K,Yanmashita F,Nagaoka T,Yamamotod K,Minamie M,Mimurad K,Suzuki K.2006. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy,Pilbara Craton,Western Australia: Evidence for the early evolution of contimental crust and hydrothermal alteration. Precambrian Research, 147: 124-147. [61] Taylor S R,McLennan S M.1985. The Continental Crust: Its Compositionand Evolution. Oxford: Blackwell Scientific Publications,1-312. [62] Wang J P,Deng X J,Wang G,Li Y.2012. Types and biotic successions of Ordovician reefs in China.Chinese Science Bulletin, 57(10): 1160-1168. [63] Wang S F,Dong D Z,Wang Y M,Li X J,Huang J L,Guan Q Z.2016a. Sedimentary geochemical proxies for paleoenvironmentinterpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation,Southern Sichuan Basin,China. Journal of Natural Gas Science and Engineering, 28: 691-699. [64] Wang X Q,Zhu Y M,Lash G G,Wang Y.2019. Multi-proxy analysis of organic matter accumulation in the UpperOrdovician-Lower Silurian black shale on the Upper Yangtze Platform,south China. Marine and Petroleum Geology, 103: 473-484. [65] Wang Y M,Dong D Z,Huang J L,Li X J,Wang S F.2016b. Guanyinqiao Member lithofacies of the Upper Ordovician Wufeng Formation around the Sichuan Basin and the significance to shale gas plays,SW China.Petroleum Exploration and Development, 43(1): 45-53. [66] Wang Y M,Li X J,Dong D Z,Zhang C C,Wang S F.2017. Main factors controlling the sedimentation of high-quality shale in theWufengeLongmaxi Fm,Upper Yangtze region.Natural Gas Industry, 4: 327-339. [67] Wronkiewicz DJ,Condie KC.1987. Geochemistry of Archean shales from the Witwatersrand Supergroup,South Africa: Source area weathering and provenance. Geochimica Et Cosmochimica Acta, 51(9): 2401-2416. [68] Wronkiewicz D J,Condie K C.1989. Geochemistry and provenance ofsediments from the Pongola Supergroup,South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica Et Cosmochimica Acta, 53: 1537-1549. [69] Wu J,Liang C,Hu Z Q,Yang R C,Xie J,Wang R Y.2019. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin.Marine and Petroleum Geology, 101: 556-565. [70] YanD T,ChenD Z,Wang Q C,Wang J G.2009a. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform,South China. Science ChinaEarth Science, 52: 38-54. [71] Yan D T,Chen D Z,Wang Q C,Wang J G,Wang Z Z.2009b. Carbon and sulphur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform,South China.Palaeogeography Palaeoclimatology Palaeoecology, 274: 32-39. [72] Yan D T,Chen D Z,Wang Q C,Wang J G.2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block,South China. Geology, 38: 599-602. [73] Yan D T,Wang H,Fu Q L,Chen Z H,He J,Gao Z.2015. Geochemical characteristics in the Longmaxi Formation(Early Silurian)of south China: Implications for organic matter accumulation. Marine and Petroleum Geology, 65: 290-301. [74] Yang R,He S,Hu Q H,Hu D F,Yi J Z.2017. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field,Sichuan Basin(China). International Journal of Coal Geology, 171: 1-11. [75] Young G M,Nesbitt H W.1999. Paleoclimatology and provenance of the Glaciogenic Gowganda Formation(Paleoproterozoic),Ontario,Canada: A chemostratigraphic approach. Geological Society of America Bulletin, 111(2): 264-274. [76] Zaid S M.2012. Provenance,diagenesis,tectonic setting and geochemistry of Rudiessandstone(Lower Miocene),Warda field,Gulf of Suez,Egypt. Journal of African Earth Sciences, 66-67: 56-71. [77] Zaid S M.2015. Geochemistry of sandstones from the Pliocene GabirFormation,north Marsa Alam,Red Sea,Egypt: Implication for provenance,weathering and tectonic setting. Journal of African Earth Sciences, 102: 1-17. [78] Zhao J H,Jin Z K,Jin Z J,Wen X,Geng Y K.2017. Origin of authigenic quartz in organic-rich shales of the Wufeng andLongmaxi Formations in the Sichuan Basin,South China: Implicationsfor pore evolution. Journal of Natural Gas Science and Engineering, 38: 21-38. [79] Zhao S Z,Li Y,Min H J,Yu Q,Wang Z J,Deng T,Liu H,Chen J.2019. Mechanisms controlling organic matter enrichment in the LowerSilurian Longmaxi Formation black shale unit,southwestern marginof the Yangtze Platform,China. Arabian Journal of Geosciences, 12: 252-267. [80] Zhou L,Algeo T J,Shen J,Hu Z F,Gong H,Xie S,Huang J H,Gao S.2015. Changes in marine productivity and redox conditions during the late Ordovician Hirnantian glaciation. Palaeogeography Palaeoclimatology Palaeoecology, 420: 223-234. [81] Zhu Y Q,Wang X Z,Feng M Y,Pu K,Cai J C.2018. Palaeo-redox environment analysis of Longmaxi Formation shale in southern Sichuan basin by XRF and ICP-MS. Science Asia, 44: 109-117. [82] Zou C N,Qiu C,Poulton S W,Dong D Z,Wang H Y,Chen D Z,Lu B,Shi Z S,Tao H F.2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46: 535-538. |