[1] 丁奕. 2016. 华南二叠系乐平统遗迹化石研究. 中国科学院大学博士论文. [Ding Y.2016. The study of Lopingian trace fossils in South China. Doctoral dissertation of University of Chinese Academy of Sciences] [2] 樊秋爽,夏国清,李高杰,伊海生. 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171. [Fan Q S,Xia G Q,Li G J,Yi H S.2022. Analytical methods and research progress of redox conditions in the paleo-ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171] [3] 龚一鸣. 2004. 遗迹化石Chondrites的指相意义和阶层分布. 古生物学报, 43(1): 94-102. [Gong Y M.2004. Facies characteristics and tiering distributions of Chondrites. Acta Palaeontologica Sinica, 43(1): 94-102] [4] 龚一鸣,胡斌,卢宗盛,齐永安,张国成. 2009. 中国遗迹化石研究80年. 古生物学报, 48(3): 322-337. [Gong Y M,Hu B,Lu Z S,Qi Y A,Zhang G C.2009. Study of trace fossils in the past eighty years in China. Acta Palaeontologica Sinica, 48(3): 322-337] [5] 黄冰. 2008. 华南奥陶纪末大灭绝后腕足动物是否存在“小型化效应”? 古生物学报, 47(2): 203-213. [Huang B.2008. Does “Little effect”of Brachiopods exist in South China after the Late Ordovician mass extinction? Acta Palaeontologica Sinica, 47(2): 203-213] [6] 晋慧娟,李育慈,方国庆. 2003. 古代深海底质氧控的遗迹化石群落. 沉积学报, 21(1): 75-80. [Jin H J,Li Y C,Fang G Q.2003. Oxygen-dependent ichnocoenose in paleo-pelagic substrates. Acta Sedimentologica Sinica, 21(1): 75-80] [7] 罗茂,龚一鸣,张立军,殷亚飞. 2021. 遗迹化石: 探索生物与环境相互作用的重要信息载体. 古生物学报, 60(3): 347-356. [Luo M,Gong Y M,Zhang L J,Yin Y F.2021. Trace fossil: a significant agent for exploring organism-environment interactions. Acta Palaeontologica Sinica, 60(3): 347-356] [8] 马会珍,张立军,龚一鸣. 2010. 华南泥盆纪Chondrites的特征及其对古氧相的示踪. 地球科学进展, 25(9): 966-973. [Ma H Z,Zhang L J,Gong Y M.2010. Chondrites from the Devonian neritic Cruziana ichnofacies as indicators of palaeo-oxygenation facies in South China. Advances in Earth Science, 25(9): 966-973] [9] 戎嘉余,黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377-404. [Rong J Y,Huang B.2014. Study of mass extinction over the past thirty years: a synopsis. Scientia Sinica Terrae, 44(3): 377-404] [10] 杨式溥,张建平,杨美芳. 2004. 中国遗迹化石. 北京: 科学出版社. [Yang S P,Zhang J P,Yang M F.2004. Trace Fossil in China. Beijing: Science Press] [11] 张静. 2015. 四川盆地东北部晚二叠世长兴期遗迹化石与环境研究. 西南石油大学硕士论文. [Zhang J.2015. Late Permian Changhsingian trace fossils in Northwest Sichuan Basin and their environmental implications. Masteral dissertation of Southwest Petroleum University] [12] 张立军,龚一鸣. 2011. 华南晚古生代Zoophycos时空分布及其控制因素. 科技导报, 29(31): 18-28. [Zhang L J,Gong Y M.2011. Spatiotemporal distribution and controlling factor of the Late Paleozoic Zoophycos in South China. Science & Technology Review, 29(31): 18-28] [13] 张明亮,郭伟,沈俊,刘凯,周炼,冯庆来,雷勇. 2017. 古海洋氧化还原地球化学指标研究新进展. 地质科技情报, 36(4): 95-106. [Zhang M L,Guo W,Shen J,Liu K,Zhou L,Feng Q L,Lei Y.2017. New progress on geochemical indicators of ancient ocean redox condition. Geological Science and Technology Information, 36(4): 95-106] [14] 郑锋利,平瑞,宋慧波,胡斌,刘顺喜. 2022. 华北西部地区太原组不同古氧相遗迹化石组合特征. 河南理工大学学报(自然科学版), 41(5): 58-67. [Zheng F L,Ping R,Song H B,Hu B,Liu S X.2022. Ichnoassemblage characteristics of different paleo-oxygenation facies in the Taiyuan Formation,western North China. Journal of Henan Polytechnic University(Natural Science), 41(5): 58-67] [15] Algeo T J,Kuwahara K,Sano H,Bates S,Lyons T,Elswick E,Linda H,Brooks E,Moser J,Maynard J B.2011. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography,Palaeoclimatology,Palaeoecology, 308(1-2): 65-83. [16] Allison P A,Wignall P B,Brett C E.1995. Palaeo-oxygenation: effects and recognition. Geological Society,London,Special Publications, 83(1): 97-112. [17] Arnold G L,Anbar A D,Barling J,Lyons T W.2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667): 87-90. [18] Ausich W I,Bottjer D J.1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542): 173-174. [19] Baucon A,Bednarz M,Dufour S,Felletti F,Malgesini G,de Carvalho C N,Niklas K J,Wehrmann A,Batstone R,Bernardini F,Briguglio A,Cabella R,Cavalazzi B,Ferretti A,Zanzerl H,Mcllroy D.2020. Ethology of the trace fossil Chondrites: form,function and environment. Earth-Science Reviews, 202: 102989. [20] Bond D P,Wignall P B.2010. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7-8): 1265-1279. [21] Bottjer D J,Ausich W I.1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12(4): 400-420. [22] Brennecka G A,Herrmann A D,Algeo T J,Anbar A D.2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 108(43): 17631-17634. [23] Bromley R G,Ekdale A A.1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224(4651): 872-874. [24] Buatois L A,Mángano M.2013. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia, 46(3): 281-292. [25] Cao C,Zheng Q.2009. Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section. Science China Earth Sciences, 52(10): 1529-1536. [26] Cao C,Love G D,Hays L E,Wang W,Shen S,Summons R E.2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281: 188-201. [27] Chu D,Tong J,Song H,Benton M J,Song H,Yu J,Qiu X,Huang Y,Tian L.2015. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeography,Palaeoclimatology,Palaeoecology, 435: 38-52. [28] Clarkson M O,Wood R A,Poulton S W,Richoz S,Newton R J,Kasemann S A,Bowyer F,Krystyn L.2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7(1): 1-9. [29] Cotgreave P.1993. The relationship between body size and population abundance in animals. Trends in Ecology & Evolution, 8(7): 244-248. [30] Ding Y,Cao C Q,Zheng Q F.2016. Lopingian(Upper Permian)trace fossils from the northern Penglaitan Section,Laibin,Guangxi,South China and their environmental implications. Palaeoworld, 25(3): 377-387. [31] Ding Y,Duan Y,Wu Y,Cao C.2021. Trace fossils from the Permian Lopingian Talung Formation at the northern Penglaitan section of Laibin area,South China: ichnology,palaeoenvironment,and palaeoecology. Geological Journal, 56(12): 6117-6134. [32] Dorador J,Rodríguez-Tovar F J.2014. A novel application of digital image treatment by quantitative pixel analysis to trace fossil research in marine cores. Palaios, 29(10): 533-538. [33] Droser M L,Bottjer D J.1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research, 56(4): 558-559. [34] Ekdale A A,Mason T R.1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 16(8): 720-723. [35] Ekdale A A,Lewis D W.1991. The New Zealand Zoophycos revisited: morphology,ethology,and paleoecology. Ichnos: An International Journal of Plant & Animal, 1(3): 183-194. [36] Emmings J F,Poulton S W,Walsh J,Leeming K A,Ross I,Peters S E.2022. Pyrite mega-analysis reveals modes of anoxia through geological time. Science Advances, 8(11): eabj5687. [37] Fan J X,Shen S Z,Erwin D H,Sadler P M,MacLeod N,Cheng Q M,Hou X D,Yang J,Wang X D,Wang Y,Zhang H,Chen X,Li G X,Zhang Y C,Shi Y K,Yuan D X,Chen Q,Zhang L N,Li C,Zhao Y Y.2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272-277. [38] Fang Z,He X,Zhang G,Zhang X,Shen Y,Qin L.2021. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes. Earth and Planetary Science Letters, 570: 117050. [39] Fernández-Martínez J,Rodríguez-Tovar F J,Piñuela L,Martínez-Ruiz F,García-Ramos J C.2021. Bottom-and pore-water oxygenation during the early Toarcian Oceanic Anoxic Event(T-OAE)in the Asturian Basin(N Spain): ichnological information to improve facies analysis. Sedimentary Geology, 419: 105909. [40] Forel M B,Crasquin S,Kershaw S,Feng Q L,Collin P Y.2009. Ostracods(Crustacea)and water oxygenation in the earliest Triassic of South China: implications for oceanic events at the end-Permian mass extinction. Australian Journal of Earth Sciences, 56(6): 815-823. [41] Grice K,Cao C,Love G D,Böttcher M E,Twitchett R J,Grosjean E,Summons R E,Turgeon S C,Dunning W,Jin Y.2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706-709. [42] Harper D E,McKinney L D,Nance J M,Salzer R R.1991. Recovery responses of two benthic assemblages following an acute hypoxic event on the Texas continental shelf,northwestern Gulf of Mexico. Geological Society,London,Special Publications, 58(1): 49-64. [43] He T,Dal Corso J,Newton R J,Wignall P B,Mills B J,Todaro S,Stefano P,Turner E,Jamieson R A,Dunhill A M.2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, 6(37): eabb6704. [44] Heard T G,Pickering K T.2008. Trace fossils as diagnostic indicators of deep-marine environments,Middle Eocene Ainsa-Jaca Basin,Spanish Pyrenees. Sedimentology, 55(4): 809-844. [45] Hotinski R M,Bice K L,Kump L R,Najjar R G,Arthur M A.2001. Ocean stagnation and end-Permian anoxia. Geology, 29(1): 7-10. [46] Huang Y,Chen Z Q,Wignall P B,Zhao L.2017. Latest Permian to Middle Triassic redox condition variations in ramp settings,South China: pyrite framboid evidence. GSA Bulletin, 129(1-2): 229-243. [47] Huang Y,Chen Z Q,Algeo T J,Zhao L,Baud A,Bhat G M,Zhang L,Guo Z.2019. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir,northern India: pyrite framboid evidence. Global and Planetary Change, 172: 124-139. [48] Isozaki Y.1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276(5310): 235-238. [49] Jin Y,Huang S,Yue X,Du H,Shen P K.2018. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. Acs Catalysis, 8(3): 2359-2363. [50] Kershaw S,Tang H,Li Y,Guo L.2018. Oxygenation in carbonate microbialites and associated facies after the end-Permian mass extinction: problems and potential solutions. Journal of Palaeogeography, 7(1): 32-47. [51] Kikuchi K,Naruse H,Kotake N.2018. Evaluation of ichnodiversity by image-resampling method to correct outcrop exposure bias. Palaios, 33(5): 204-217. [52] Kim J Y,Pickerill R.2003. Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae area,Kyongsangnamdo,southeast Korea. Ichnos, 9(1-2): 41-60. [53] Kipp M A,Tissot F L.2022. Inverse methods for consistent quantification of seafloor anoxia using uranium isotope data from marine sediments. Earth and Planetary Science Letters, 577: 117240. [54] Knaust D.2013. The ichnogenus Rhizocorallium: classification,trace makers,palaeoenvironments and evolution. Earth-Science Reviews, 126: 1-47. [55] Knaust D,Curran H A,Dronov A V.2012. Developments in Sedimentology. Amsterdam: Elsevier. [56] Kristensen E,Penha-Lopes G,Delefosse M,Valdemarsen T,Quintana C O,Banta G T.2012. What is bioturbation?The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series, 446: 285-302. [57] Lei L D,Shen J,Li C,Algeo T J,Chen Z Q,Feng Q L,Cheng M,Jin C S,Huang J H.2017. Controls on regional marine redox evolution during Permian-Triassic transition in South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 486: 17-32. [58] Lethiers F,Whatley R.1994. The use of Ostracoda to reconstruct the oxygen levels of Late Palaeozoic oceans. Marine Micropaleontology, 24(1): 57-69. [59] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X.2010. A stratified redox model for the Ediacaran Ocean. Science, 328(5974): 80-83. [60] Li C,Shi W,Cheng M,Jin C,Algeo T J.2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Chinese Science Bulletin, 65(24): 2141-2149. [61] Li G,Wang Y,Shi G R,Liao W,Yu L.2016. Fluctuations of redox conditions across the Permian-Triassic boundary: new evidence from the GSSP section in Meishan of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 48-58. [62] Liao Z,Hu W,Cao J,Wang X,Fu X.2020. Oceanic anoxia through the late Permian Changhsingian Stage in the Lower Yangtze region,South China: evidence from sulfur isotopes and trace elements. Chemical Geology, 532: 119371. [63] Liu H,Wang Y,Yuan A,Yang H,Song H,Zhang S.2010. Ostracod fauna across the Permian-Triassic boundary at Chongyang,Hubei Province,and its implication for the process of the mass extinction. Science China Earth Sciences, 53(6): 810-817. [64] Luo M,Shi G R,Buatois L A,Chen Z Q.2020. Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: a critical review. Earth Science Reviews, 203: 103059. [65] Marenco K N,Bottjer D J.2010. The intersection grid technique for quantifying the extent of bioturbation on bedding planes. Palaios, 25(7): 457-462. [66] Mekki F,Zhang L J,Vinn O,Toom U,Benyoucef M,Bendella M,Bouchemla E,Bensalah M,Adaci M.2019. Middle Jurassic Zoophycos and Chondrites from the mélah formation of saharan atlas,Algeria. Estonian Journal of Earth Sciences, 68(4): 190-198. [67] Meysman F J,Middelburg J J,Heip C H.2006. Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology & Evolution, 21(12): 688-695. [68] Newby S M,Owens J D,Schoepfer S D,Algeo T J.2021. Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes. Nature Geoscience, 14(9): 678-683. [69] Pimentel-Galvan M,Lau K V,Maher K,Mukerji T,Lehrmann D J,Altiner D,Payne J L.2022. Duration and intensity of end-Permian marine anoxia. Geochemistry,Geophysics,Geosystems, 23(1): e2021GC010130. [70] Rhoads D C,Morse J W.1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4(4): 413-428. [71] Rodríguez-Tovar F J,Uchman A.2010. Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian oceanic anoxic event in the Fuente de la Vidriera section,Betic Cordillera,Spain. Palaios, 25(9): 576-587. [72] Rodríguez-Tovar F J.2021. Ichnology of the Toarcian Oceanic Anoxic Event: an underestimated tool to assess palaeoenvironmental interpretations. Earth-Science Reviews, 216: 103579. [73] Savrda C E,Bottjer D J,Gorsline D S.1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica,San Pedro,and Santa Barbara Basins,California Continental Borderland. AAPG Bulletin, 68(9): 1179-1192. [74] Savrda C E,Bottjer D J.1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14(1): 3-6. [75] Savrda C E,Bottjer D J.1989. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation,Colorado. Palaeogeography,Palaeoclimatology,Palaeoecology, 74: 49-74. [76] Savrda C E,Bottjer D J.1991. Oxygen-related biofacies in marine strata: an overview and update. Geological Society,London,Special Publications, 58(1): 201-219. [77] Schlacher T A,Lucrezi S,Peterson C H,Connolly R M,Olds A D,Althaus F,Hyndes G,Maslo B,Gilby B,Leon J X,Weston M A,Lastra M,Williams A,Schoeman D S.2016. Estimating animal populations and body sizes from burrows: marine ecologists have their heads buried in the sand. Journal of Sea Research, 112: 55-64. [78] Semenza G L.2007. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochemical Journal, 405(1): 1-9. [79] Seilacher A.1967. Bathymetry of trace fossils. Marine Geology, 5: 413-428. [80] Seilacher A.1974. Flysch trace fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie,Monatshefte, 4: 233-245. [81] Sepkoski Jr J J,Bambach R K,Raup D M,Valentine J W.1981 Phanerozoic marine diversity and the fossil record. Nature, 293(5832): 435-437. [82] Smith C R,Levin L A,Hoover D J,McMurtry G,Gage J D.2000. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 47: 227-257. [83] Song H,Tong J,Chen Z Q.2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography,Palaeoclimatology,Palaeoecology, 308: 98-110. [84] Song H,Wignall P B,Chu D,Tong J,Sun Y,Song H,He W,Tian L.2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 4(1): 1-7. [85] Song H,Song H,Algeo T J,Tong J,Romaniello S J,Zhu Y,Chu D L,Gong Y M,Anbar A D.2017. Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology, 45(10): 887-890. [86] Sperling E A,Wolock C J,Morgan A S,Gill B C,Kunzmann M,Halverson G P,Macdonald F A,Knoll A H,Johnston D T.2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561): 451-454. [87] Stanley S M.2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences, 113(42): E6325-E6334. [88] Takahashi S,Hori R S,Yamakita S,Aita Y,Takemura A,Ikehara M,Xiong Y J,Poulton S W,Wignall P B,Itai T,Campbell H J,Spörli B K.2021. Progressive development of ocean anoxia in the end-Permian pelagic Panthalassa. Global and Planetary Change, 207: 103650. [89] Taylor A M,Goldring R.1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1): 141-148. [90] Twitchett R J,Barras C G.2004. Trace fossils in the aftermath of mass extinction events. Geological Society,London,Special Publications, 228(1): 397-418. [91] Uchman A.2004. Phanerozoic history of deep-sea trace fossils. Geological Society,London,Special Publications, 228(1): 125-139. [92] Wang D,Ling H F,Struck U,Zhu X K,Zhu M,He T,Yang B,Gamper A,Shields G A.2018. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 9(1): 1-8. [93] Watkins R,Coorough P J.1997. Silurian Thalassinoides in an offshore carbonate community,Wisconsin,USA. Palaeogeography,Palaeoclimatology,Palaeoecology, 129: 109-117. [94] Wignall P B.1994. Blake shale. Oxford: Oxford Science Publication. [95] Xiang L,Schepfer S D,Zhang H,Yuan D X,Cao C Q,Zheng Q F,Henderson C M,Shen S Z.2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi,South China. Palaeogeography,Palaeoclimatology,Palaeoecology,448(SI): 59-71. [96] Xiang L,Zhang H,Schoepfer S D,Cao C Q,Zheng Q F,Yuan D X,Cai Y F,Shen S Z.2020. Oceanic redox evolution around the end-Permian mass extinction at Meishan,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 544: 109626. [97] Xiang L,Schoepfer S D,Yuan D X,Zheng Q F,Zhang H.2022. Oceanic redox evolution across the end-Permian mass extinction at Penglaitan section,South China. Palaeoworld, 31(1): 93-102. [98] Yin H F,Zhang K X,Tong J N,Yang Z Y,Wang S B.2001. The global stratotype section and point(GSSP)of the Permian-Triassic boundary. Episodes Journal of International Geoscience, 24(2): 102-114. [99] Yuan D X,Shen S Z,Henderson C M,Chen J,Zhang H,Feng H Z.2014. Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections,South China. Lithos, 204: 220-245. [100] Zhao X M,Tong J N.2010. Two episodic changes of trace fossils through the Permian-Triassic transition in the Meishan cores,Zhejiang Province. Science China Earth Science, 53(12): 1885-1893. [101] Zhang J P,Li C,Fang X,Li W J,Deng Y Y,Tu C Y,Algeo T J,Lyons T W,Zhang Y D.2022. Progressive expansion of seafloor anoxia in the Middle to Late Ordovician Yangtze Sea: implications for concurrent decline of invertebrate diversity. Earth and Planetary Science Letters, 598: 117858. [102] Zhang L J.2014. Lower Devonian tempestites in western Yangtze,South China: insight from Zoophycos ichnofabrics. Geological Journal, 49(2): 177-187. [103] Zhang L J,Fan R Y,Gong Y M.2015a. Zoophycos macroevolution since 541 Ma. Scientific Reports, 5(1): 1-10. [104] Zhang L J,Shi G R,Gong Y M.2015b. An ethological interpretation of Zoophycos based on Permian records from South China and southeastern Australia. Palaios, 30(5): 408-423. [105] Zhang L J,Zhao Z.2016. Complex behavioural patterns and ethological analysis of the trace fossil Zoophycos: evidence from the Lower Devonian of South China. Lethaia, 49(2): 275-284. [106] Zhang L J,Buatois L A,Mángano M G,Gong Y M,Feng Q L,Qi Y A,Luo M,Zhang X.2018. Uppermost Permian trace fossils along a shelf to slope transect in South China and their implications for oceanic redox evolution and extinction pattern. Global and Planetary Change, 167: 74-86. [107] Zhang L J,Zhang X,Buatois L A,Mángano M G,Shi G R,Gong Y M,Qi Y A.2020. Periodic fluctuations of marine oxygen content during the latest Permian. Global and Planetary Change, 195: 103326. [108] Zhang X,Sigman D M,Morel F M,Kraepiel A M.2014. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences, 111(13): 4782-4787. [109] Zheng Q F,Cao C Q,Zhang M Y.2013. Sedimentary features of the Permian-Triassic boundary sequence of the Meishan section in Changxing County,Zhejiang Province. Science China Earth Sciences, 56: 956-969. [110] Zheng Q F,Zhang H,Yuan D X,Wang Y,Wang W Q,Cao C Q,Shen S Z.2022. High-resolution sedimentology,ichnology,and benthic marine redox conditions from Late Permian to the earliest Triassic at Shangsi,South China: local,regional,and global signals and driving mechanisms. Earth-Science Reviews, 225: 103898. |