[1] 陈明江,程亮,陆涛. 2019. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响. 岩性油气藏, 32(2): 1-10. [Chen M J,Cheng L,Lu T.2019. Pore structure characterization and its impact on water-flood development in the Khasib reservoir in Ahdeb field,Iraq. Lithologic Reservoirs, 32(2): 1-10] [2] 陈曦,吕波,黄素,何施雨,杜亚曦,朱讯. 2011. 陕西韩城—旬邑地区中奥陶统马家沟组豹斑白云岩研究. 新疆地质, 29(2): 222-225. [Chen X,Lü B,Huang S,He S Y,Du Y X,Zhu X.2011. Study of leopard fur dolomite in Mid-Ordovician Majiagou Formation Hancheng-Xunyi distinct in Shanxi Province. Xinjiang Geology, 29(2): 222-225] [3] 邓虎成,周文,郭睿,伏美燕,谢润成,陈文玲,彭先锋,肖睿. 2014. 伊拉克艾哈代布油田中—下白垩统碳酸盐岩储层孔隙结构及控制因素. 岩石学报, 30(3): 801-812. [Deng H C,Zhou W,Guo R,Fu M Y,Xie R C,Chen W L,Peng X F,Xizo R.2014. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous Formation,AI Hardy cloth Oilfield,Iraq. Acta Petrologica Sinica, 30(3): 801-812] [4] 邓小江,梁波,莫耀汉,李国蓉,王鑫,于海波,乔占峰. 2007. 塔河地区奥陶系一间房组礁滩相储层特征及成因机制新认识. 地质科技情报, 26(4): 63-69. [Deng X J,Liang B,Mo Y H,Li G R,Wang X,Yu H B,Qiao Z F.2007. A new know of characteristics and genesis of reef and bank facies reservoris in Ordovician Yijianfang Formation in Tahe Oilfield. Geological Science and Technology Information, 26(4): 63-69] [5] 顾家裕,方辉,蒋凌志. 2001. 塔里木盆地奥陶系生物礁的发现及其意义. 石油勘探与开发, 28(4): 1-3. [Gu J Y,Fang H,Jang L Z.2001. The significance of Ordovician reef discovery in Tarim Basin. Petroleum Exploration and Development, 28(4): 1-3] [6] 郭建华,沈昭国,李建明. 1994. 塔北东段下奥陶统白云石化作用. 石油与天然气地质, 15(1): 51-59. [Guo J H,Shen Z G,Li J M.1994. Dolomitization of Lower Ordovician in eastern ector of north Tarim region. Oil & Gas Geology, 15(1): 51-59] [7] 韩革华,漆立新,李宗杰,樊政军. 2006. 塔河油田奥陶系碳酸盐岩缝洞型储层预测技术. 石油与天然气地质,27(6): 860-870,878. [Han G H,Qi L X,Li Z J,Fan Z J.2006. Prediction of the Ordovician fractured-vuggy carbonate reservoirs in Tahe oilfield. Oil & Gas Geology,27(6): 860-870,878] [8] 郝毅,林良彪,周进,高倪超,张建勇,陈薇. 2012. 川西北中二叠统栖霞组豹斑灰岩特征与成因. 成都理工大学学报(自然科学版), 39(6): 651-656. [Hao Y,Lin L B,Zhou J,Gao N C,Zhang J Y,Chen W.2012. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation,Northwest Sichuan,China. Journal of Chengdu University of Technology(Science and Technology Edition), 39(6): 651-656] [9] 纪友亮,赵澂林,刘孟慧. 1990. 生物扰动构造对碎屑岩储层储集性能的影响. 石油大学学报(自然科学版), 14(6): 1-8. [Ji Y L,Zhao C L,Liu M H.1990. The effect of bioturbate structure on the peyrophysical properties of sandstone reservoir. Journal of China University of Petroleum(Science and Technology Edition), 14(6): 1-8] [10] 贾振远,马淑媛. 1984. 山东莱芜地区下古生界豹斑灰岩的成因及其意义. 地质论评, 30(3): 224-229. [Jia Z Y,Ma S Y.1984. The origin and significance of Lower Paleozoic patchy limestone in Laiwu,Shandong Province. Geological Review, 30(3): 224-229] [11] 林世国,施振生,李君,王宗礼,高阳,李正文. 2012. 四川盆地上三叠统生物扰动环境分析及与储集性能的关系. 天然气地球科学, 23(1): 74-80. [Lin S G,Shi Z S,Li J,Wang Z L,Gao Y,Li Z W.2012. Environmental interpretation of Upper Triassic bioturbation structures and correlation with petrophysical properties of reservoirs in Sichuan Basin. Natural Gas Geoscience, 23(1): 74-80] [12] 鲁新便,何成江,邓光校,鲍典. 2014. 塔河油田奥陶系油藏喀斯特古河道发育特征描述. 石油实验地质, 36(3): 268-274. [Lu X B,He C J,Deng G X,Bao D.2014. Development features of karst ancient river system in Ordovician reservoirs,Tahe Oilfield. Petroleum Geology & Experiment, 36(3): 268-274] [13] 牛永斌,钟建华,王培俊,单婷婷,李润泽. 2010. 成岩作用对塔河油田二区奥陶系碳酸盐岩储集空间发育的影响. 中国石油大学学报(自然科学版), 34(6): 13-19. [Niu Y B,Zhong J H,Wang P J,Shan T T,Li R Z.2010. Effect of diagenesis on accumulate capability of Ordovician carbonate rock in block 2 of Tahe Oilfield. Journal of China University of Petroleum(Science and Technology Edition), 34(6): 13-19] [14] 牛永斌,崔胜利,胡亚洲,钟建华,王培俊. 2017. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征. 古地理学报, 19(2): 353-363. [Niu Y B,Cui S L,Hu Y Z,Zhong J H,Wang P J.2017. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe Oilfield of Tarim Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 353-363] [15] 牛永斌,崔胜利,胡亚洲,钟建华,潘结南. 2018. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义. 古地理学报, 20(4): 691-702. [Niu Y B,Cui S L,Hu Y Z,Zhong J H,Pan J N.2018. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield. Journal of Palaeogeography(Chinese Edition), 20(4): 691-702] [16] 牛永斌,齐永安,胡斌,宋慧波,邢智峰,代明月,李妲. 2019. 遗迹组构的精细分析功能及其应用: 第15届国际遗迹组构专题研讨会综述. 古地理学报, 21(5): 767-782. [Niu Y B,Qi Y A,Hu B,Song H B,Xing Z F,Dai M Y,Li D.2019. Fine analysis functions and their application of ichnofabric: Outline of the 15th international Ichnofabric Workshop. Journal of Palaeogeography(Chinese Edition), 21(5): 767-782] [17] 齐永安. 1999. 生物扰动和遗迹组构的描述与分析. 河南地质, 17(4): 273-277. [Qi Y A.1999. The description and analysis of bioturbation and ichnofabric. Henan Geology, 17(4): 273-277] [18] 沈瑛楚,宋新民,刘波,王根久,郭睿,罗清清,石开波,王欢,刘航宇. 2019. 伊拉克AD油田上白垩统Kh2段生物扰动与储层非均质性. 天然气地球科学, 30(12): 1755-1770. [Shen Y C,Song X M,Liu B,Wang G J,Guo R,Luo Q Q,Shi K B,Wang H,Liu H Y.2019. Bioturbation and reservoir heterogeneity study of Upper Cretaceous Kh2 member,AD Oilfield,Iraq. Natural Gas Geoscience, 30(12): 1755-1770] [19] 盛军,杨晓菁,李纲,徐立,李雅楠,王靖茹,张彩燕,崔海栋. 2019. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用. 现代地质, 33(3): 653-661,671. [Sheng J,Yang X J,Li G,Xu L,Li Y N,Wang J R,Zhang C Y,Cui H D.2019. Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs.Geoscience, 33(3): 653-661,671] [20] 孙亮,王晓琦,金旭,李建明,吴松涛. 2016. 微纳米孔隙空间三维表征与连通性定量分析. 石油勘探与开发, 43(3): 490-498. [Sun L,Wang X Q,Jin X,Li J M,Wu S T.2016. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space. Petroleum Exploration and Development, 43(3): 490-498] [21] 王晨晨,姚军,杨永飞,王鑫,汲广胜,高莹. 2013. 碳酸盐岩双孔隙数字岩心结构特征分析. 中国石油大学学报(自然科学版), 37(2): 71-74. [Wang C C,Yao J,Yang Y F,Wang X,Ji G S,Gao Y.2013. The construction of carbonate digital rock with hybrid superposition method. Journal of China University of Petroleum(Edition of Natural Science), 37(2): 71-74] [22] 尹燕义,王国娟,方少仙. 1996. 生物扰动对砂岩储集性和含油性的影响. 石油勘探与开发, 23(5): 29-32. [Yi Y Y,Wang G J,Fang S X.1996. The influence of the bioturbation on the quality of the reservoir and oil-bearing capability of the sandstone reservoirs. Petroleum Exploration and Development, 23(5): 29-32] [23] 翟晓先,俞仁连,何发岐,周家驹. 2002. 塔河地区奥陶系一间房组微裂隙颗粒灰岩储集体的发现与勘探意义. 石油实验地质, 24(5): 387-392. [Zhai X X,Yu R L,He F Q,Zhou J J.2002. Discover and exploration significance of microfissure grain limestone reservoirs in the Ordovician Yijianfang of Tahe Area. Petroleum Geology and Experiment, 24(5): 387-392] [24] 赵新伟,许红. 2016. 基于微焦X-CT的碳酸盐岩孔隙结构精细表征. 特种油气藏, 23(1): 127-131,157. [Zhao X W,Xu H.2016. Microfocus X-CT based fine characterization of carbonate pore texture. Special Oil and Gas Reservoirs, 23(1): 127-131,157] [25] 郑和荣,刘春燕,吴茂炳,王毅. 2009. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用. 石油学报, 30(1): 9-15. [Zheng H R,Liu C Y,Wu M B,Wang Y.2009. Burial dissolution of Ordovician granule limestone in Tarim Basin. Acta Petrolei Sinica, 30(1): 9-15] [26] 郑剑锋,陈永权,倪新锋,严威,黄理力,张艳. 2016. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征. 天然气地球科学, 27(5): 780-789. [Zheng J F,Chen Y Q,Ni X F,Yan W,Huang L L,Zhang Y.2016. Microscopic characterization based on CT imaging technology of Cambrian dolomite reservoir in Tarim Basin. Natural Gas Geoscience, 27(5): 780-789] [27] 钟建华,孔凡亮,李阳,袁向春,高玉飞,梁刚,艾合买提江·阿不都热和曼,陈鑫,牛永斌,王培俊. 2010. 塔河油田四区奥陶系碳酸盐岩油藏中的缝合线研究. 地质论评, 56(6): 841-850. [Zhong J H,Kong F L,Li Y,Yuan X C,Gao Y F,Liang G,Ahmatjan A,Chen X,Niu Y B,Wang P J.2010. Research of stylolites in Ordovician carbonate reservoirs of the 4th Block,Tahe Oilfield,Tarim Basin. Geological Review, 56(6): 841-850] [28] Abdel-Fattah Z A,Gingras M K,Caldwell M W,Pemberton S G,MacEachern J A.2016. The glossifungites ichnofacies and sequence stratigraphic analysis: A case study from Middle to Upper Eocene successions in Fayum,Egypt. Ichnos, 23(3-4): 157-179. [29] Adam A,Swennen R,Abdulghani W,Abdlmutalib A,Hariri M,Abdulraheem A.2018. Reservoir heterogeneity and quality of Khuff carbonates in outcrops of central Saudi Arabia. Marine and Petroleum Geology, 89: 721-751. [30] Andrea B,De C C N,Roberto B,Federico B,Barbara C,Antonio C,Fabrizio F,Annalisa F,Peter S H,Antonio T,Claudia T.2017. Organism-substrate interactions and astrobiology. Earth-Science Reviews, 17: 141-180. [31] Baniak G M.2013. Characterization of Reservoir Quality Using Ichnological,Sedimentological,and Geochemical Methods. Doctoral Dissertation of University of Albert: 1-238. [32] Baniak G M,Gingras M K,Pemberton S G.2013. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group,Pine Creek gas field,central Alberta,Canada. Marine and Petroleum Geology, 48: 275-292. [33] Baniak G M,Amskold L,Konhauser K O,Muehlenbachs K,Pemberton S G,Gingras M K.2014. Sabkha and burrow-mediated dolomitization in the mississippian Debolt Formation,northwestern Alberta,Canada. Ichnos, 21(3): 158-174. [34] Bayet-Goll A,Samani P N,Neto de Carvalho C,Monaco P,Khodaie N,Pour M M,Kazemeini H,Zareiyan M H.2017. Sequence stratigraphy and ichnology of Early Cretaceous reservoirs,Gadvan Formation in southwestern Iran. Marine and Petroleum Geology, 81: 294-319. [35] Bednarz M,McIlroy D.2012. Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality. AAPG Bulletin, 96(10): 1957-1980. [36] Bednarz M,McIlroy D.2015. Organism-sediment interactions in shale-hydrocarbon reservoir facies: Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. International Journal of Coal Geology, 150-151: 238-251. [37] Ben-Awuah J,Eswaran P.2015. Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta,offshore Sarawak,Malaysia. Petroleum Exploration and Development, 42(2): 223-231. [38] Corlett H J,Jones B.2012. Petrographic and geochemical contrasts between calcite- and dolomite-filled burrows in the Middle Devonian Lonely Bay Formation,Northwest Territories,Canada: Implications for dolomite formation in Paleozoic burrows. Journal of Sedimentary Research, 82(9): 648-663. [39] Cunningham K J,Sukop M C,Huang H,Alvarez P F,Curran H A,Renken R A,Dixon J F.2009. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones. Geological Society of America Bulletin,121(1/2): 164-180. [40] Dey J,Souvik S.2017. Impact of bioturbation on reservoir quality and production: A review. Journal Geological Society of India, 89: 460-470. [41] Friesen O J,Dashtgard S E,Miller J,Schmitt L,Baldwin C.2017. Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs,Cardium Formation,Pembina Field,Alberta,Canada. Marine and Petroleum Geology, 82: 371-387. [42] Gingras M K,Mendoza C A,Pemberton S G.2004a. Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin, 88(7): 875-883. [43] Gingras M K,Pemberton S G,Muehlenbachs K,Hans M.2004b. Conceptual models for burrow-related,selective dolomitization with textural and isotopic evidence from the Tyndall Stone,Canada. Geobiology, 2(1): 21-30. [44] Gingras M K,Pemberton S G,Floyd H,MacEachern J A,Mendoza C,Ben R,Riley H,Michele S,Konhauser K O.2005. Application of ichnology to fluid and gas production in hydrocarbon reservoirs. SEPM Society of Sedimentary Geology, 52: 129-143. [45] Gingras M K,Pemberton S G,Michael S.2014. Bioturbation-reworking sediments for better or worse. Oilfield Review Winter, 26(4): 46-58. [46] Golab J A,Smith J J,Clark A K,Blome C D.2017a. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone,Middle Trinity Aquifer,Northern Bexar County,Texas. Sedimentary Geology, 351: 1-10. [47] Golab J A,Smith J J,Clark A K,Morris R R.2017b. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous(Aptian-Albian)Glen Rose Limestone. Palaeogeography,Palaeoclimatology, Palaeoecology, 465: 138-155. [48] Gordon J B,Pemberton S G,Gingras M K,Konhauser K O.2010. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation,Alberta,Canada. AAPG Bulletin, 94(11): 1779-1795. [49] Greene T J,Gingras M K,Gordon G S,McKeel D R.2012. The significance of deep-water cryptic bioturbation in slope-channel massive sand deposits of the lower Rio Dell Formation,Eel River basin,California. Marine and Petroleum Geology, 29(1): 152-174. [50] Hollis C,Vahrenkamp V,Tull S,Mookerjee A,Taberner C,Huang Y.2010. Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, 27(4): 772-793. [51] Hsieh A I,Allen D M,MacEachern J A.2015. Statistical modeling of biogenically enhanced permeability in tight reservoir rock. Marine and Petroleum Geology, 65: 114-125. [52] Hsieh A I,Allen D M,MacEachern J A.2017. Upscaling permeability for reservoir-scale modeling in bioturbated,heterogeneous tight siliciclastic reservoirs: Lower Cretaceous Viking Formation,Provost Field,Alberta,Canada. Marine and Petroleum Geology, 88: 1032-1046. [53] Jin J,Harper D A T,Rasmussen J A,Sheehan P M.2012. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia. Palaeogeography,Palaeoclimatology,Palaeoecology, 367-368: 73-88. [54] Knaust D.2009. Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian-Triassic Khuff Formation in the Middle East. Geoarbia, 14(3): 17-38. [55] Knaust D.2014. Classification of bioturbation-related reservoir quality in the Khuff Formation(Middle East): Towards a genetic approach. In: Pöppelreiter M C(ed). Perom-Triassic Sequence of the Arabian Plate. Netherlands: EAGE, 247-267. [56] Knaust D,Dorador J,Rodríguez-Tovar F J.2020. Burrowed matrix powering dual porosity systems: A case study from the Maastrichtian chalk of the Gullfaks Field,Norwegian North Sea. Marine and Petroleum Geology, 113:104158. [57] La Croix A D,Gingras M K,Dashtgard S E,Pemberton S G.2012. Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways. AAPG Bulletin, 96(3): 545-556. [58] La Croix A D,Gingras M K,Pemberton S G,Mendoza C A,MacEachern J A,Lemiski R T.2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field,Alberta,Canada. Marine and Petroleum Geology, 43: 464-477. [59] La Croix A D,MacEachern J A,Ayranci K,Hsieh A,Dashtgard S E.2017. An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: Insights from the Lower Cretaceous Viking Formation,Alberta,Canada. Marine and Petroleum Geology, 86: 636-654. [60] Li Y,Hou J,Li Y.2016. Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs. Petroleum Exploration and Development, 43(4): 655-662. [61] Lilian O.2016. Bioturbation: It’s effect on reservoir qualigy. International Journal of Science Inventions Today, 5(3): 248-260. [62] Liu H,Shi K,Liu B,Song X,Guo R,Li Y,Wang G,Wang H,Shen Y.2019. Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation,AD oilfield,central Mesopotamian Basin,Iraq. Marine and Petroleum Geology, 110: 747-767. [63] Mao C,Zhong J,Li Y,Wang Y,Niu Y,Ni L,Shao Z.2014. Ordovician carbonate rock matrix fractured-porous reservoirs in Tahe Oilfield,Tarim Basin,NW China. Petroleum Exploration and Development, 41(6): 745-753. [64] Martinius A W,Fustic M,Garner D L,Jablonski B V J,Strobl R S,MacEachern J A,Dashtgard S E.2017. Reservoir characterization and multiscale heterogeneity modeling of inclined heterolithic strata for bitumen-production forecasting,McMurray Formation,Corner,Alberta,Canada. Marine and Petroleum Geology, 82: 336-361. [65] Njiekak G,Schmitt D R,Kofman R S.2018. Pore systems in carbonate formations,Weyburn field,Saskatchewan,Canada: Micro-tomography,helium porosimetry and mercury intrusion porosimetry characterization. Journal of Petroleum Science and Engineering, 171: 1496-1513. [66] Pemberton S G,Gingras M K.2005. Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89(11): 1493-1517. [67] Qi Y,Wang M,Zheng W,Li D.2012. Calcite cements in burrows and their influence on reservoir property of the Donghe sandstone,Tarim Basin,China. Journal of Earth Science, 23(2): 129-141. [68] Quaye J A,Jiang Z,Zhou X.2019. Bioturbation influence on reservoir rock quality: A case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag,Subei basin,China. Journal of Petroleum Science and Engineering, 172: 1165-1173. [69] Raeini A Q,Yang J,Bondino I,Bultreys T,Blunt M J,Bijeljic B.2019. Validating the generalized pore network model using micro-CT images of two-phase flow. Transport in Porous Media, 130(2): 405-424. [70] Rameil N.2008. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains(NW Switzerland,E France). Sedimentary Geology, 212(1-4): 70-85. [71] Rashid F,Glover P W J,Lorinczi P,Collier R,Lawrence J.2015. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. Journal of Petroleum Science and Engineering, 133: 147-161. [72] Rodríguez-Tovar F J,Dorador J,Mayoral E,Santos A.2017. Outcrop and core integrative ichnofabric analysis of Miocene sediments from Lepe,Huelva(SW Spain): Improving depositional and paleoenvironmental interpretations. Sedimentary Geology, 349: 62-78. [73] Tian F,Jin Q,Lu X,Lei Y,Zhang L,Zheng S,Zhang H,Rong Y,Liu N.2016. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A Case study in the Tahe Oilfield,Tarim Basin,Western China. Marine and Petroleum Geology, 69: 53-73. [74] Tonkin N S,Mcllory D,Meyer R,Moore-Turpin A.2010. Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation,Jeanned’Arc Basin,offshore Newfoundland,Canada. AAPG Bulletin, 94(7): 1059-1078. [75] Wei D,Gao Z,Zhang C,Fan T,Karubandika G M,Meng M.2019. Pore characteristics of the carbonate shoal from fractal perspective. Journal of Petroleum Science and Engineering, 174: 1249-1260. [76] Zenger D H.1992. Burrowing and dolomitization patterns in the Steamboat Point Member,Bighorn Dolomite(Upper Ordovician),northwest Wyoming. Geology, 29(2): 133-142. [77] Zenger D H.1996. Dolomitization patterns in widespread Bighorn Facies upper Ordovician Western Craton USA. Carbonates & Evaporites, 11(2): 219-225. [78] Zheng C Y C,Mángano M G,Buatois L A.2018. Ichnology and depositional environments of the Upper Ordovician Stony Mountain Formation in the Williston Basin,Canada: Refining ichnofacies and ichnofabric models for Epeiric Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 501: 13-29. |