[1] |
车世琦. 2018. 测井资料用于页岩岩相划分及识别: 以涪陵气田五峰组—龙马溪组为例. 岩性油气藏, 30(1): 121-132.
|
|
[Che S Q. 2018. Shale lithofacies identification and classification by using logging data: a case of Wufeng-Longmaxi Formation in Fuling Gas Field,Sichuan Basin. Lithologic Reservoirs, 30(1): 121-132]
doi: 10.3969/j.issn.1673-8926.2018.01.012
|
[2] |
陈登辉, 隋清霖, 赵晓健, 荆德龙, 滕家欣, 高永宝. 2019. 西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境. 沉积学报, 37(3): 477-490.
|
|
[Chen D H, Sui Q L, Zhao X J, Jing D L, Teng J X, Gao Y B. 2019. Geology,geochemical characteristics,and sedimentary environment of Mn-bearing carbonate from the Late Carboniferous Muhu manganese deposit in West Kunlun. Acta Sedimentologica Sinica, 37(3): 477-490]
|
[3] |
付秀丽, 蒙启安, 郑强, 王忠杰, 金明玉, 白月, 崔坤宁. 2022. 松辽盆地古龙页岩有机质丰度旋回性与岩相古地理. 大庆石油地质与开发, 41(3): 38-52.
|
|
[Fu X L, Meng Q A, Zheng Q, Wang Z J, Jin M Y, Bai Y, Cui K N. 2022. Cyclicity of organic matter abundance and lithofacies paleogeography of Gulong shale in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 41(3): 38-52]
|
[4] |
何伟, 陈杨, 雷玉雪, 钱程, 陈科, 林拓, 宋腾. 2021. 鄂西地区五峰组—龙马溪组岩石相与页岩气富集关系分析: 以鄂红地1井为例. 煤炭学报, 46(3): 1014-1023.
|
|
[He W, Chen Y, Lei Y X, Qian C, Chen K, Lin T, Song T. 2021. Analyses of the relationship between lithology and shale gas accumulation for the Wufeng Formation to Longmaxi Formation in the west of Hubei Province: a case study of the Erhongdi 1 well. Journal of China Coal Society, 46(3): 1014-1023]
|
[5] |
赖锦, 李红斌, 张梅, 白梅梅, 赵仪迪, 范旗轩, 庞小娇, 王贵文. 2023. 非常规油气时代测井地质学研究进展. 古地理学报, 25(5): 1118-1138.
doi: 10.7605/gdlxb.2023.05.057
|
|
[Lai J, Li H B, Zhang M, Bai M M, Zhao Y D, Fan Q X, Pang X J, Wang G W. 2023. Advances in well logging geology in the era of unconventional hydrocarbon resources. Journal of Palaeogeography(Chinese Edition), 25(5): 1118-1138]
|
[6] |
李红斌, 王贵文, 王松, 庞小娇, 刘士琛, 包萌, 彭寿昌, 赖锦. 2022. 基于Kohonen神经网络的页岩油岩相测井识别方法: 以吉木萨尔凹陷二叠系芦草沟组为例. 沉积学报, 40(3): 626-640.
|
|
[Li H B, Wang G W, Wang S, Pang X J, Liu S C, Bao M, Peng S C, Lai J. 2022. Shale oil lithofacies identification by Kohonen neural network method: the case of the Permian Lucaogou Formation in Jimusaer Sag. Acta Sedimentologica Sinica, 40(3): 626-640]
|
[7] |
李宁, 冯周, 武宏亮, 田瀚, 刘鹏, 刘英明, 刘忠华, 王克文, 徐彬森. 2023. 中国陆相页岩油测井评价技术方法新进展. 石油学报, 44(1): 28-44.
doi: 10.7623/syxb202301003
|
|
[Li N, Feng Z, Wu H L, Tian H, Liu P, Liu Y M, Liu Z H, Wang K W, Xu B S. 2023. New advances in methods and technologies for well logging evaluation of continental shale oil in China. Acta Petrolei Sinica, 44(1): 28-44]
doi: 10.7623/syxb202301003
|
[8] |
李占山, 刘兆赓. 2019. 基于XGBoost的特征选择算法. 通信学报, 40(10): 101-108.
doi: 10.11959/j.issn.1000-436x.2019154
|
|
[Li Z S, Liu Z G. 2019. Feature selection algorithm based on XGBoost. Journal on Communications, 40(10): 101-108]
doi: 10.11959/j.issn.1000-436x.2019154
|
[9] |
刘忠宝, 刘光祥, 胡宗全, 冯动军, 朱彤, 边瑞康, 姜涛, 金治光. 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义: 以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10-21.
|
|
[Liu Z B, Liu G X, Hu Z Q, Feng D J, Zhu T, Bian R K, Jiang T, Jin Z G. 2019. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: a case study of the Middle and Lower Jurassic strata in the Sichuan Basin. Natural Gas Industry, 39(12): 10-21]
|
[10] |
柳波, 孙嘉慧, 张永清, 贺君玲, 付晓飞, 杨亮, 邢济麟, 赵小青. 2021. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式. 石油勘探与开发, 48(3): 521-535.
doi: 10.11698/PED.2021.03.08
|
|
[Liu B, Sun J H, Zhang Y Q, He J L, Fu X F, Yang L, Xing J L, Zhao X Q. 2021. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag,southern Songliao Basin,NE China. Petroleum Exploration and Development, 48(3): 521-535]
|
[11] |
罗钰涵, 葛政俊, 谌廷姗, 洪亚飞, 林波, 刘宗堡. 2022. 基于卷积神经网络的陆相页岩油岩相类型识别方法及系统. 中国专利: CN114881171A.2024-11-29.
|
|
[Luo Y H, Ge Z J, Shen T S, Hong Y F, Lin B, Liu Z B. 2022. The identification method and system of continental shale facies based on convolutional neural network are introduced in this paper. Chinese Patent: CN114881171A. 2024-11-29]
|
[12] |
毛玉丹. 2023. 页岩岩相测井识别方法. 石油知识,(3): 54-55.
|
|
[Mao Y D. 2023. Identification method of shale lithofacies by logging. Petroleum Knowledge,(3): 54-55]
|
[13] |
庞小娇, 王贵文, 匡立春, 赵飞, 李红斌, 韩宗晏, 白天宇, 赖锦. 2023. 沉积环境控制下的页岩岩相组合类型及测井表征: 以松辽盆地古龙凹陷青山口组为例. 古地理学报, 25(5): 1156-1175.
doi: 10.7605/gdlxb.2023.05.090
|
|
[Pang X J, Wang G W, Kuang L C, Zhao F, Li H B, Han Z Y, Bai T Y, Lai J. 2023. Logging evaluation of lithofacies and their assemblage under control of sedimentary environment: a case study of the Qingshankou Formation in Gulong sag,Songliao Basin. Journal of Palaeogeography(Chinese Edition), 25(5): 1156-1175]
|
[14] |
彭军, 曾垚, 杨一茗, 于乐丹, 许天宇. 2022. 细粒沉积岩岩石分类及命名方案探讨. 石油勘探与开发, 49(1): 106-115.
doi: 10.11698/PED.2022.01.09
|
|
[Peng J, Zeng Y, Yang Y M, Yu L D, Xu T Y. 2022. Discussion on classification and naming scheme of fine-grained sedimentary rocks. Petroleum Exploration and Development, 49(1): 106-115]
|
[15] |
彭丽, 伍轶鸣, 练章贵, 彭鹏, 王剑, 苏洲, 易珍丽. 2019. 陆相断陷湖盆高频层序特征及其沉积演化: 以渤海湾盆地济阳坳陷沙三下亚段为例. 石油与天然气地质, 40(4): 789-798.
|
|
[Peng L, Wu Y M, Lian Z G, Peng P, Wang J, Su Z, Yi Z L. 2019. Features and sedimentary evolution of high-frequency sequence in continental lacustrine rift basin: example of the lower Shahejie member 3 in Jiyang Depression,Bohai Bay Basin. Oil & Gas Geology, 40(4): 789-798]
|
[16] |
沈骋, 任岚, 赵金洲, 陈铭培. 2021. 页岩岩相组合划分标准及其对缝网形成的影响:以四川盆地志留系龙马溪组页岩为例. 石油与天然气地质, 42(1): 98-106, 123.
|
|
[Shen C, Ren L, Zhao J Z, Chen M P. 2021. Division of shale lithofacies associations and their impact on fracture network formation in the Silurian Longmaxi Formation,Sichuan Basin. Oil & Gas Geology, 42(1): 98-106,123]
|
[17] |
史长林, 魏莉, 张剑, 杨丽娜. 2022. 基于机器学习的储层预测方法. 油气地质与采收率, 29(1): 90-97.
|
|
[Shi C L, Wei L, Zhang J, Yang L N. 2022. Reservoir prediction method based on machine learning. Petroleum Geology and Recovery Efficiency, 29(1): 90-97]
|
[18] |
谌丽, 王才志, 宁从前, 刘英明, 王浩. 2023. 基于机器学习的鄂尔多斯盆地陇东地区长7段岩相测井识别方法. 油气藏评价与开发, 13(04): 525-536.
|
|
[Shen L, Wang C Z, Ning C Q, Liu Y M, Wang H. 2023. Well-log lithofacies classification based on machine learning for Chang-7 member in Longdong area of Ordos Basin. Petroleum Reservoir Evaluation and Development, 13(4): 525-536]
|
[19] |
田瀚, 闫伟林, 武宏亮, 闫学洪, 李潮流, 郑建东, 冯周. 2023. 一种陆相页岩油岩相测井定量识别方法. 地球物理学进展, 38(5): 2122-2134.
|
|
[Tian H, Yan W L, Wu H L, Yan X H, Li C L, Zheng J D, Feng Z. 2023. Logging quantitative identification method for lithofacies of continental shale oil. Progress in Geophysics, 38(5): 2122-2134]
|
[20] |
王民, 杨金路, 王鑫, 李进步, 徐亮, 言语. 2023. 基于随机森林算法的泥页岩岩相测井识别. 地球科学, 48(1): 130-142.
|
|
[Wang M, Yang J L, Wang X, Li J B, Xu L, Yan Y. 2023. Identification of shale lithofacies by well logs based on random forest algorithm. Earth Science, 48(1): 130-142]
|
[21] |
徐传正, 李鑫, 田继军, 吝文, 蒋立伟, 张治恒. 2021. 四川盆地南缘龙马溪组混合岩相页岩及其沉积环境. 煤炭科学技术, 49(5): 208-217.
|
|
[Xu C Z, Li X, Tian J J, Lin W, Jiang L W, Zhang Z H. 2021. Mixed lithofacies shale and depositional environment of Longmaxi Formation in southern margin of Sichuan Basin. Coal Science and Technology, 49(5): 208-217]
|
[22] |
薛纯琦, 吴建光, 张健, 张守仁, 吴翔, 程璐, 钟建华. 2021. 机器学习在页岩岩相识别中的应用:以鄂尔多斯临兴地区山西太原组页岩为例. 2021年煤层气学术研讨会, 2021-10-10.
|
|
[Xue C Q, Wu J G, Zhang J, Zhang S R, Wu X, Cheng L, Zhong J H. 2021. The application of machine learning in shale lithofacies identification is taken as an example of Taiyuan Formation shale in Linxing area of Ordos. Annual CBM Academic Symposium in 2021, 2021-10-10]
|
[23] |
张家臣, 邓金根, 谭强, 石林. 2022. 基于XGBoost的测井曲线重构方法. 石油地球物理勘探, 57(3): 697-705,496.
|
|
[Zhang J C, Deng J G, Tan Q, Shi L. 2022. Reconstruction of well logs based on XGBoost. Oil Geophysical Prospecting, 57(3): 697-705,496]
|
[24] |
张晋言. 2013. 泥页岩岩相测井识别及评价方法. 石油天然气学报, 35(4): 96-103,167-168.
|
|
[Zhang J Y. 2013. Shale lithofacies logging identification and evaluation. Journal of Oil and Gas Technology, 35(4): 96-103,167-168]
|
[25] |
张益粼, 王贵文, 宋连腾, 包萌, 黄玉越, 赖锦, 王松, 黄立良. 2023. 页岩岩相测井表征方法: 以准噶尔盆地玛湖凹陷风城组为例. 地球物理学进展, 38(1): 393-408.
|
|
[Zhang Y L, Wang G W, Song L T, Bao M, Huang Y Y, Lai J, Wang S, Huang L L. 2023. Logging identification method of shale lithofacies: a study of Fengcheng Formation in Mahu Sag,Junggar Basin. Progress in Geophysics, 38(1): 393-408]
|
[26] |
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 时战楠, 肖敦清, 韩文中, 姜文亚, 张伟, 汪虎. 2019. 断陷湖盆湖相页岩油形成有利条件及富集特征: 以渤海湾盆地沧东凹陷孔店组二段为例. 石油学报, 40(9): 1013-1029.
doi: 10.7623/syxb201909001
|
|
[Zhao X Z, Zhou L H, Pu X G, Jin F M, Shi Z N, Xiao D Q, Han W Z, Jiang W Y, Zhang W, Wang H. 2019. Favorable formation conditions and enrichment characteristics of lacustrine facies shale oil in faulted lake basin: a case study of Member 2 of Kongdian Formation in Cangdong sag,Bohai Bay Basin. Acta Petrolei Sinica, 40(9): 1013-1029]
doi: 10.7623/syxb201909001
|
[27] |
Chen T Q, Guestrin C. 2016. XGBoost: a scalable tree boosting system. The ACM SIGKDD International Conference. DOI: 10.1145/2939672.2939785.
|
[28] |
He J H, Ding W L, Jiang Z X, Li A, Wang R Y, Sun Y X. 2016. Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3L shale in the Jiyang Depression,Bohai Bay Basin, Eastern China. Journal of Petroleum Science & Engineering, 145(1): 238-255.
|
[29] |
Pang Q, Hu G, Hu C W, Meng F S, Wang B Z, Zhang J Y. 2024. The lithofacies of sandstones interbedded with shales: implication for organic matter accumulation of Triassic deep lacustrine setting,Southern Ordos Basin. ACS Omega, 9(22): 23266-23282.
|
[30] |
Peng Y X, Guo S B. 2023. Lithofacies analysis and paleosedimentary evolution of Taiyuan Formation in Southern North China Basin. Journal of Petroleum Science & Engineering, 220: 111127.
|
[31] |
Su K, Yuan X, Huang Y K, Yuan Q, Yang M H, Sun J W, Li S Y, Long X Y, Liu L, Li T W, Yuan Z Q. 2023. Improved prediction of knee osteoarthritis by the machine learning model XGBoost. Indian Journal of Orthopaedics, 57(10): 1667-1677.
doi: 10.1007/s43465-023-00936-0
pmid: 37766962
|
[32] |
Sun B, Liu X P, Liu J, Wang G C, Shu H L, Luo Y F, Liu T, Hua Z X. 2022. The heterogeneity of lithofacies types,combination modes,and sedimentary model of lacustrine shale restricted by high-frequency sequence. Geological Journal, 57(10): 1.
|
[33] |
Wang D, Zhang Y N. 2024. Coupling of SME innovation and innovation in regional economic prosperity with machine learning and IoT technologies using XGBoost algorithm. Soft Computing, 28(4): 2919-2939.
|
[34] |
Xue C Q, McBeck J A, Lu H J, Yan C H, Zhong J H, Wu J G, Renard F. 2024. Classification of shale lithofacies with minimal data: application to the early Permian shales in the Ordos Basin, China. Journal of Asian Earth Sciences, 259: 105901.
|
[35] |
Zheng D Y, Hou M C, Chen A Q, Zhong H T, Qi Z, Ren Q, You J C, Wang H Y, Ma C. 2022. Application of machine learning in the identification of fluvial-lacustrine lithofacies from well logs: a case study from Sichuan Basin,China. Journal of Petroleum Science and Engineering, 215: 110610.
|
[36] |
Zhu X, Chu J, Wang K D, Wu S F, Yan W, Chiam K. 2021. Prediction of rockhead using a hybrid N-XGBoost machine learning framework. Journal of Rock Mechanics and Geotechnical Engineering, 13(6): 1231-1245.
|