[1] 陈留勤,李鹏程,郭福生,刘鑫,李馨敏. 2019. 粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义. 沉积学报, 37(1): 17-29. [Chen L Q,Li P C,Guo F S,Liu X,Li X M.2019. Facies analysis and paleoclimate implications of the Late Cretaceous Danxia Formation in the Danxia Basin,northern Guangdong Province,South China. Acta Sedimentologica Sinica, 37(1): 17-29] [2] 杜后发,姜勇彪,严兆彬,侯增谦,杨天南,郭福生,杨庆坤. 2011. 青海囊谦古近纪盆地沉积特征及沉积环境分析. 地质学报, 85(3): 383-395. [Du H F,Jiang Y B,Yan Z B,Hou Z Q,Yang T N,Guo F S,Yang Q K.2011. Sedimentary characteristics and environment of the Paleogene Nangqian Basin in Qinghai Province. Acta Geologica Sinica, 85(3): 383-395] [3] 杜后发,江媛媛,姜勇彪,严兆彬. 2017. 囊谦古近纪盆地贡觉组膏盐岩及其硫同位素特征. 东华理工大学学报(自然科学版), 40(2): 165-172. [Du H F,Jiang Y Y,Jiang Y B,Yan Z B.2017. Characteristics of gypsum-salt and sulfur isotopes in the Gonjo Formation of Nangqen Paleogene Basin. Journal of East China University of Technology(Natural Science), 40(2): 165-172] [4] 何书元,田有华,陈开国,陈庆云,文化川. 1983. 西藏东部早第三纪贡觉红层. 青藏高原地质文集, 6(1): 233-242. [He S Y,Tian Y H,Chen G G,Chen Q Y,Wen H C.1983. Early Tertiary Gongjue red beds in eastern Tibet. Tibetan Plateau Geology, 6(1): 233-242] [5] 黄乐清,黄建中,罗来,王先辉,刘耀荣,梁恩云,马慧英. 2019. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义. 沉积学报, 37(4): 735-748. [Huang L Q,Huang J Z,Luo L,Wang X H,Liu Y R,Liang E Y,Ma H Y.2019. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin,Hunan,and its paleoenvironmental significance. Acta Sedimentologica Sinica, 37(4): 735-748] [6] 江新胜,李玉文. 1996. 中国中东部白垩纪沙漠的时空分布及其气候意义. 岩相古地理, 16(2): 42-51. [Jiang X S,Li Y W.1996. Spato-temporal distribution of the Cretaceous Deserts in central and eastern China and its climatic significance. Sedimentary Facies and Palaeogeography, 16(2): 42-51] [7] 江新胜,潘忠习. 2005. 中国白垩纪沙漠及气候. 北京: 地质出版社. [Jiang X S,Pan Z X.2005. Cretaceous Deserts and Climate in China. Beijing: Geological Publishing House] [8] 江新胜,潘忠习,徐金沙,李晓勇,谢国刚,肖志坚. 2006. 江西信江盆地晚白垩世风成沙丘的发现及其古风向. 地质通报, 25(7): 833-838. [Jiang X S,Pan Z X,Xu J S,Li X Y,Xie G G,Xiao Z J.2006. Late Cretaceous eolian dunes and wind directions in Xinjiang Basin,Jiangxi Province,China. Geological Bulletin of China, 25(7): 833-838] [9] 李廷栋. 1995. 青藏高原隆升的过程和机制. 地球学报, 1(1): 1-9. [Li T D.1995. Process and mechanism of the uplift of the Qinghai-Tibet Plateau. Acta Geoscientia Sinica, 1(1): 1-9] [10] 李忠雄,陈智梁,李修忠,Gizbert C,Burchfiel B C.2004. 青藏高原东部贡觉盆地新生代火山岩的K-Ar稀释法年龄. 地球科学, 29(3): 278-282. [Li Z X,Chen Z L,Li X Z,Gizbert C,Burchfiel B C.2004. K-Ar ages of Cenozoic volcanic rocks from Gongjue Basin in eastern Tibet. Earth Science, 29(3): 278-282] [11] 刘宝珺. 1980. 沉积岩石学. 北京: 地质出版社. [Liu B J.1980. Sedimentary Petrology. Beijing: Geological Publishing House] [12] 潘桂棠,王培生,徐耀荣. 1990. 青藏高原新生代构造演化. 北京: 地质出版社. [Pan G T,Wang P S,Xu Y R.1990. Cenozoic Tectonic Evolution of the Tibetan Plateau. Beijing: Geological Publishing House] [13] 孙永传,李蕙生. 1986. 碎屑岩沉积相和沉积环境. 北京: 地质出版社. [Sun Y C,Li H S.1986. Clastic Sedimentary Facies and Sedimentary Environment. Beijing: Geological Publishing House] [14] 汤海磊,梁瑞,伊海生,李高杰. 2022. 楚雄盆地白垩纪晚期盐湖风成砂微观组构特征研究. 矿产综合利用,43(1): 57-70. [Tang H L,Liang R,Yi H S,Li G J.2022. Study on the microstructure characteristics of Late Cretaceous aeolian sand in the playa from Chuxiong Basin. Multipurpose Utilization of Mineral Resources,43(1): 57-70] [15] 许欢,柳永清,旷红伟,彭楠,丁家翔,杜研,苑婷媛. 2023. 古风成沉积理论体系与研究进展. 沉积学报, 41(6): 1681-1713. [Xu H,Liu Y Q,Kuang H W,Peng N,Ding J X,Du Y,Yuan T Y.2023. Theoretical system and research progress of eolian deposits. Acta Sedimentologica Sinica, 41(6): 1681-1713] [16] 张克信,王国灿,陈奋宁,徐亚东,骆满生,向树元,寇晓虎,赵来时. 2007. 青藏高原古近纪—新近纪隆升与沉积盆地分布耦合. 地球科学, 32(5): 583-597. [Zhang K X,Wang G C,Chen F N,Xu Y D,Luo M S,Xiang S Y,Kou X H,Zhao L S.2007. Coupling between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene. Earth Science, 32(5): 583-597] [17] 张克信,王国灿,季军良,骆满生,寇晓虎,王岳明,徐亚东,陈奋宁,陈锐明,宋博文,张楗钰,梁银平. 2010. 青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应. 中国科学: 地球科学, 40(12): 1632-1654. [Zhang K X,Wang G C,Ji J L,Luo M S,Kou X H,Wang Y M,Xu Y D,Chen F N,Chen R M,Song B W,Zhang J Y,Liang Y P.2010. Paleogene-Neogene stratigraphic division and sequence of Qinghai-Tibet Plateau and their response to uplift. Science in China: Earth Sciences, 40(12): 1632-1654] [18] 赵澄林,朱筱敏. 2001. 沉积岩石学(第三版). 北京: 石油工业出版社. [Zhao C L,Zhu X M.2001. Sedimentary Petrology(3rd). Beijing: Petroleum Industry Press] [19] 周江羽,王江海,尹安,Spurlin M S,Horton B K.2002. 青藏东北缘早第三纪盆地充填的沉积型式及构造背景: 以囊谦和下拉秀盆地为例. 沉积学报, 20(1): 85-91. [Zhou J Y,Wang J H,Yin A,Spurlin M S,Horton B K.2002. Depositional patterns and tectonic setting of Early Tertiary basins in the NE margin of the Tibetan Plateau: a case study of the Nangqian and Xialaxiu basins. Acta Sedimentologica Sinica, 20(1): 85-91] [20] 周江羽,王江海,Yin A,Horton B,Spurlin M S.2003. 青藏高原东缘古近纪粗碎屑岩沉积学及其构造意义. 地质学报, 77(2): 262-271. [Zhou J Y,Wang J H,Yin A,Horton B,Spurlin M S.2003. Sedimentology and tectonic significance of Paleogene coarse clastic rocks in eastern Tibet. Acta Geologica Sinica, 77(2): 262-271] [21] 周江羽,王江海. 2019. 青藏高原中东部早期构造隆升对古近纪盆地充填和演化的影响. 地质学报, 93(8): 1793-1813. [Zhou J Y,Wang J H.2019. Early tectonic uplift affecting sedimentary filling and evolution of Paleogene basins in the central-eastern Tibetan Plateau. Acta Geologica Sinica, 93(8): 1793-1813] [22] 朱丽,张会化,王江海,周江羽,解广轰. 2006. 金沙江—红河构造带北段囊谦盆地新生代高钾岩石 40Ar/39Ar 年代学研究. 大地构造与成矿学, 30(2): 241-247. [Zhu L,Zhang H H,Wang J H,Zhou J Y,Xie G H.2006. 40Ar/39Ar chronology of high-K magmatic rocks in Nangqian Basin at the northern segment of the Jinsha-Red River Shear Zone(JRRSZ). Geotectonica et Metallogenia, 30(2): 241-247] [23] 朱日祥,赵盼,赵亮. 2022. 新特提斯洋演化与动力过程. 中国科学: 地球科学, 52(1): 1-25. [Zhu R X,Zhao P,Zhao L.2022. Evolution and dynamic processes of the New Tethys Ocean. Scientia Sinica Terrae, 52(1): 1-25] [24] Al-Masrahy M A,Mountney N P.2015. A classification scheme for fluvial-aeolian system interaction in desert-margin settings. Aeolian Research, 17: 67-88. [25] Bagnold R A.1941. The Physics of Blown Sand and Desert Dune. London: Methuen & Company. [26] Barclay R S,Mcelwain J C,Sageman B B.2010. Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nature Geoscience, 3(3): 205-208. [27] Barnet J S K,Littler K,Kroon D,Leng M J,Westerhold T,Röhl U,Zachos J C.2018. A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism. Geology, 46(2): 147-150. [28] Barrera E,Savin S M.1999. Evolution of late Campanian-Maastrichtian marine climates and oceans. In: Barrera E,Johnson C C(eds). Evolution of the Cretaceous Ocean-Climate System. The Geological Society of America, 332(1): 245-282. [29] Boucot A J,Xu C,Scotese C R,Morley R J.2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Tulsa,Oklahoma,U.S.A. SEPM(Society for Sedimentary Geology). [30] Brookfield M E.1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24(3): 303-332. [31] Bull W B.1977. The alluvial-fan environment. Progress in Physical Geography: Earth and Environment, 1(2): 222-270. [32] Burchfiel B C,Chen Z L.2012. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Boulder: The Geological Society of America. [33] Cao Y,Sun Z M,Li H B,Pei J L,Liu D L,Zhang L,Ye X Z,Zheng Y,He X L,Ge C L,Jiang W.2019. New paleomagnetic results from Middle Jurassic limestones of the Qiangtang terrane,Tibet: constraints on the evolution of the Bangong-Nujiang Ocean. Tectonics, 38(1): 215-232. [34] Costa P J M,Andrade C,Mahaney W C,Marques da Silva F,Freire P,Freitas M C,Janardo C,Oliveira M A,Silva T,Lopes V.2013. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: comparison with aeolian quartz. Geomorphology, 180-181: 120-129. [35] DeCelles P G,Kapp P,Ding L,Gehrels G E.2007. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning,aridification,and regional elevation gain. GSA Bulletin, 119(5-6): 654-680. [36] DeCelles P G,Kapp P,Gehrels G E,Ding L.2014. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics, 33(5): 824-849. [37] Deng B,Chew D,Jiang L,Mark C,Cogné N,Wang Z J,Liu S G.2018. Heavy mineral analysis and detrital U-Pb ages of the intracontinental Paleo-Yangzte Basin: implications for a transcontinental source-to-sink system during Late Cretaceous time. GSA Bulletin, 130(11-12): 2087-2109. [38] Ding L,Kapp P,Cai F L,Garzione C N,Xiong Z Y,Wang H Q,Wang C.2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 652-667. [39] Friedrich O,Norris R D,Erbacher J.2012. Evolution of Middle to Late Cretaceous oceans: a 55 m.y. record of Earth's temperature and carbon cycle. Geology, 40(2): 107-110. [40] Fryberger S G,Schenk C.1981. Wind sedimentation tunnel experiments on the origins of aeolian strata. Sedimentology, 28(6): 805-821. [41] Fryberger S G,Schenk C J.1988. Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments. Sedimentary Geology, 55(1-2): 1-15. [42] Fryberger S G,Hesp P,Hastings K.1992. Aeolian granule ripple deposits,Namibia. Sedimentology, 39(2): 319-331. [43] Fryberger S G.1993. A review of aeolian bounding surfaces,with examples from the Permian Minnelusa Formation,USA. Geological Society, London, Special Publications, 73(1): 167-197. [44] Gao Y,Ibarra D E,Wang C S,Caves J K,Chamberlain C P,Graham S A,Wu H C.2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 43(4): 287-290. [45] Gao Y S,Wang C S,Wang P J,Gao Y F,Huang Y J,Zou C C.2019. Progress on continental scientific drilling project of Cretaceous Songliao Basin(SK-1 and SK-2). Science Bulletin, 64(2): 73-75. [46] Gao Y,Ibarra D E,Caves Rugenstein J K,Chen J Q,Kukla T,Methner K,Gao Y F,Huang H,Lin Z P,Zhang L M,Xi D P,Wu H C,Carroll A R,Graham S A,Chamberlain C P,Wang C S.2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: a multiproxy record from the Songliao Basin in northeastern China. Earth-Science Reviews, 216: 103572. [47] Ghazi S,Mountney N P.2009. Facies and architectural element analysis of a meandering fluvial succession: the Permian Warchha Sandstone,Salt Range,Pakistan. Sedimentary Geology, 221(1-4): 99-126. [48] Goudie A S,Watson A.1981. The shape of desert sand dune grains. Journal of Arid Environments, 4(3): 185-190. [49] Haq B U.2014. Cretaceous eustasy revisited. Global and Planetary Change, 113(1): 44-58. [50] Havholm K G,Kocurek G.1994. Factors controlling aeolian sequence stratigraphy: clues from super bounding surface features in the Middle Jurassic Page Sandstone. Sedimentology, 41(5): 913-934. [51] Higgs R.1979. Quartz-grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins. Journal of Sedimentary Research, 49(2): 599-610. [52] Hu F,Wu F,Chapman J B,Ducea M N,Ji W,Liu S.2020. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios. Geophysical Research Letters, 47(15): e2020GL-089202. [53] Huber B T,MacLeod K G,Watkins D K,Coffin M F.2018. The rise and fall of the Cretaceous Hot Greenhouse climate. Global and Planetary Change, 167(1): 1-23. [54] Hunter R E.1977. Basic types of stratification in small eolian dunes. Sedimentology, 24(3): 361-387. [55] Hunter R E.1981. Stratification styles in eolian sandstones: some Pennsylvanian to Jurassic examples from the western interior USA. In: Ethridge F G,Flores R M(eds). Recent and Ancient Nonmarine Depositional Environments,Models for Exploration. Tulsa: Society of Economic Paleontologists and Mineralogists, 31: 315-329. [56] Ibarra D E,Dai J G,Gao Y,Lang X H,Duan P Z,Gao Z J,Chen J Q,Methner K,Sha L J,Tong H,Han X,Zhu D C,Li Y L,Tang J X,Cheng H,Chamberlain C P,Wang C S.2023. High-elevation Tibetan Plateau before India-Eurasia collision recorded by triple oxygen isotopes. Nature Geoscience, 16: 810-815. [57] Ji W Q,Wu F Y,Chung S L,Li J X,Liu C Z.2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet. Chemical Geology, 262(3-4): 229-245. [58] Jones F H,dos Santos Scherer C M,Kuchle J.2016. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits,Permian Caldeirão Member(Santa Brígida Formation),Brazil. Sedimentary Geology, 337: 133-150. [59] Jung C,Voigt S,Friedrich O,Koch M C,Frank M.2013. Campanian-Maastrichtian ocean circulation in the tropical Pacific. Paleoceanography, 28(3): 562-573. [60] Kapp P,Yin A,Harrison T M,Ding L.2005. Cretaceous-Tertiary shortening,basin development,and volcanism in central Tibet. GSA Bulletin, 117(7-8): 865-878. [61] Kapp P,DeCelles P G,Gehrels G E,Heizler M,Ding L.2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119(7-8): 917-933. [62] Kocurek G.1981. Significance of interdune deposits and bounding surfaces in aeolian dune sands. Sedimentology, 28(6): 753-780. [63] Kocurek G.1991. Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences, 19: 43-75. [64] Kocurek G.1999. The aeolian rock record. In: Goudie A S,Livingstone I,Stokes S(eds). Aeolian Environments Sediments and Landforms. Chichester: Wiley,239-259. [65] Kocurek G,Dott R H.1981. Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Research, 51(2): 579-595. [66] Kocurek G,Dott R H.1983. Jurassic paleogeography and paleoclimate of the central and southern Rocky Mountains region. In: Reynolds M W,Dolly E D(eds). Mesozoic paleogeography of the west-central United States. Denver: Society of Economic Paleontologists and Mineralogists, 1: 101-116. [67] Kocurek G,Havholm,K G.1993. Eolian sequence stratigraphy: a conceptual framework. In: Weimer P,Posamentier H W(eds). Siliclastic Sequence Stratigraphy: Recent Developments and Applications. Tulsa: American Association of Petroleum Geologists, 1: 393-409. [68] Kocurek G,Lancaster N.1999. Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology, 46(3): 505-515. [69] Krinsley D H,Donahue J.1968. Environmental interpretation of sand grain surface textures by electron microscopy. GSA Bulletin, 79(6): 743-748. [70] Krinsley D H,Doornkamp J C.2011. Atlas of Quartz Sand Surface Textures. Cambridge University Press. [71] Lancaster N.2014. Aeolian Processes. In: Elias S A(ed). Reference Module in Earth Systems and Environmental Sciences. Amsterdam: Elsevier. [72] Leier A L,Decelles P G,Kapp P,Ding L.2007. The Takena Formation of the Lhasa terrane,southern Tibet: the record of a Late Cretaceous retroarc foreland basin. GSA Bulletin, 119(1-2): 31-48. [73] Li G J,Wu C H,Rodríguez-López J P,Yi H S,Xia G Q,Wagreich M.2018. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin,China: implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia. Sedimentary Geology, 364: 121-140. [74] Li L Q,Keller G.1998. Maastrichtian climate,productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33(1-2): 55-86. [75] Li S H,van Hinsbergen D J J,Najman Y,Jing L Z,Deng C L,Zhu R X.2020. Does pulsed Tibetan deformation correlate with Indian plate motion changes. Earth and Planetary Science Letters, 536: 116144. [76] Littler K,Robinson S A,Bown P R,Nederbragt A J,Pancost R D.2011. High sea-surface temperatures during the Early Cretaceous Epoch. Nature Geoscience, 4(3): 169-172. [77] Mack G H,Rasmussen K A.1984. Alluvial-fan sedimentation of the Cutler Formation(Permo-pennsylvanian)near Gateway,Colorado. GSA Bulletin, 95(1): 109-116. [78] Mahaney W C.2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press. [79] Mateo P,Keller G,Punekar J,Spangenberg J E.2017. Early to Late Maastrichtian environmental changes in the Indian Ocean compared with Tethys and South Atlantic. Palaeogeography,Palaeoclimatology,Palaeoecology, 478(1): 121-138. [80] Mather A E,Hartley A.2005. Flow events on a hyper-arid alluvial fan: Quebrada Tambores,Salar de Atacama,northern Chile. Geological Society,London,Special Publications, 251(1): 9-24. [81] Miall A D.2014. Fluvial Depositional Systems. Cham: Springer International Publishing. [82] Mountney N P.2006. Eolian facies models. In: Posamentier H W,Walker R G(eds). Facies Models Revisited. Tulsa: SEPM Society for Sedimentary Geology, 1: 19-83. [83] Mountney N P.2012. A stratigraphic model to account for complexity in aeolian dune and interdune successions. Sedimentology, 59(3): 964-989. [84] Mountney N P,Howell J,Flint S,Jerram D.1999. Relating eolian bounding-surface geometries to the bed forms that generated them: Etjo Formation,Cretaceous,Namibia. Geology, 27(2): 159-162. [85] Murphy M A,Yin A,Harrison T M,Durr S B,Ryerson F J,Kidd W S F.1997. Did the Indo-Asian collision alone create the Tibetan plateau?Geology, 25(8): 719-722. [86] Mountney N P,Jagger A.2004. Stratigraphic evolution of an aeolian erg margin system: the Permian Cedar Mesa Sandstone,SE Utah,USA. Sedimentology, 51(4): 713-743. [87] Nickling W G,Neuman C M,Lancaster N.2002. Grainfall processes in the lee of transverse dunes,Silver Peak,Nevada. Sedimentology, 49(1): 191-209. [88] Nordt L,Atchley S,Dworkin S.2003. Terrestrial evidence for two greenhouse events in the latest Cretaceous. GSA Today, 13(12): 4-9. [89] Parrish J T,Peterson F.1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States: a comparison. Sedimentary Geology, 56(1-4): 261-282. [90] Rodríguez-López J P,De Boer P L,Meléndez N,Soria A R,Pardo G.2006. Windblown desert sands in coeval shallow marine deposits: a key for the recognition of coastal ergs in the mid-Cretaceous Iberian Basin,Spain. Terra Nova, 18(5): 314-320. [91] Rodríguez-López J P,Clemmensen L B,Lancaster N,Mountney N P,Veiga G D.2014. Archean to Recent aeolian sand systems and their sedimentary record: current understanding and future prospects. Sedimentology, 61(6): 1487-1534. [92] Roger F,Jolivet M,Cattin R,Malavieille J.2011. Mesozoic-Cenozoic tectonothermal evolution of the eastern part of the Tibetan Plateau(Songpan-Garzê,Longmen Shan area): insights from thermochronological data and simple thermal modelling. Geological Society,London,Special Publications, 353(1): 9-25. [93] Romain H G,Mountney N P.2014. Reconstruction of three-dimensional eolian dune architecture from one-dimensional core data through adoption of analog data from outcrop. AAPG Bulletin, 98(1): 1-22. [94] Rubin D M,Hunter R E.1983. Reconstructing bedform assemblages from compound crossbedding. In: Brookfield M E,Ahlbrandt T S(eds). Eolian Sediments and Processees. Amsterdam: Elsevier,407-427. [95] Rubin D M,Carter C L.1987. Cross-bedding,Bedforms,and Paleocurrents. Tulsa: SEPM Society for Sedimentary Geology. [96] Scherer C M S.2000. Eolian dunes of the Botucatu Formation(Cretaceous)in southernmost Brazil: morphology and origin. Sedimentary Geology, 137(1-2): 63-84. [97] Scherer C M S,Goldberg K.2007. Palaeowind patterns during the latest Jurassic-earliest Cretaceous in Gondwana: evidence from aeolian cross-strata of the Botucatu Formation,Brazil. Palaeogeography,Palaeoclimatology,Palaeoecology, 250(1-4): 89-100. [98] Scherer C M S,Mello R G,Ferronatto J P F,Amarante F B,Reis A D,Souza E G,Goldberg K.2020. Changes in prevailing surface-palaeowinds of western Gondwana during Early Cretaceous. Cretaceous Research, 116: 104598. [99] Sharp R P.1963. Wind ripples. The Journal of Geology, 71(5): 617-636. [100] Studnicki-Gizbert C,Burchfiel B C,Li Z,Chen Z.2008. Early Tertiary Gonjo Basin,eastern Tibet: sedimentary and structural record of the early history of India-Asia collision. Geosphere, 4(4): 713-735. [101] Sun G Y,Hu X M,Sinclair H D,BouDagher-Fadel M K,Wang J G.2015. Late Cretaceous evolution of the Coqen Basin(Lhasa Terrane)and implications for early topographic growth on the Tibetan Plateau. GSA Bulletin, 127(7-8): 1001-1020. [102] Tada R,Siever R.1986. Experimental knife-edge pressure solution of halite. Geochimica et Cosmochimica Acta, 50(1): 29-36. [103] Tang M Y,Jing L Z,Hoke G D,Xu Q,Wang W T,Li Z F,Zhang J Y,Wang W.2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin,SE-central Tibet. Tectonophysics, 712-713: 170-181. [104] Tierney J E,Zhu J,King J,Malevich S B,Hakim G J,Poulsen C J.2020. Glacial cooling and climate sensitivity revisited. Nature, 584(7822): 569-573. [105] Todd S P.1989. Stream-driven,high-density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation,SW Ireland and some theoretical considerations of their origin. Sedimentology, 36(4): 513-530. [106] Tucker M E,Jones S J.2023. Sedimentary Petrology. Chichester: John Wiley & Sons. [107] Vos K,Vandenberghe N,Elsen J.2014. Surface textural analysis of quartz grains by scanning electron microscopy(SEM): from sample preparation to environmental interpretation. Earth-Science Reviews, 128: 93-104. [108] Walker T R,Mckee E D.1979. Red color in dune sand. United States Geological Survey Professional Papers, 1052: 61-81. [109] Wang C S,Feng Z Q,Zhang L M,Huang Y J,Cao K,Wang P J,Zhao B.2013. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin,northeast China. Palaeogeography,Palaeoclimatology,Palaeoecology, 385(1): 17-30. [110] Wang C,Ding L,Zhang L Y,Kapp P,Pullen A,Yue Y H.2016. Petrogenesis of Middle-Late Triassic volcanic rocks from the Gangdese belt,southern Lhasa terrane: implications for early subduction of Neo-Tethyan oceanic lithosphere. Lithos, 262: 320-333. [111] Wang Y D,Huang C M,Sun B N,Quan C,Wu J Y,Lin Z C.2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews, 129: 136-147. [112] Waugh B.1970. Formation of quartz overgrowths in the Penrith Sandstone(Lower Permian)of northwest England as revealed by scanning electron microscopy. Sedimentology, 14(3-4): 309-320. [113] Wilf P,Johnson K R,Huber B T.2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 100(2): 599-604. [114] Wu C H,Liu C L,Yi H S,Xia G Q,Zhang H,Wang L C,Li G J,Wagreich M.2017. Mid-Cretaceous desert system in the Simao Basin,southwestern China,and its implications for sea-level change during a greenhouse climate. Palaeogeography,Palaeoclimatology,Palaeoecology, 468: 529-544. [115] Wu C H,Rodríguez-López J P,Santosh M.2022. Plateau archives of lithosphere dynamics,cryosphere and paleoclimate: the formation of Cretaceous desert basins in East Asia. Geoscience Frontiers, 13(6): 101454. [116] Wu C H,Sun X M,Li G W,Huang L Q,Jiao H J,Li Z W,Jian X,Mason C C,Rodríguez-López J P.2023. Cretaceous mountain building processes triggered the aridification and drainage evolution in East Asia. GSA Bulletin, 11: 20-43. [117] Wu G X,Liu Y M,He B,Bao Q,Duan A M,Jin F F.2012. Thermal controls on the Asian summer monsoon. Scientific Reports, 2(1): 404-415. [118] Xiao R Y,Zheng Y,Liu X C,Yang Q,Liu G,Xia L,Bian Z,Guan J,Feng P,Xu H,Clift P D,Qiang X,Zhang Y,Zheng H.2021. Synchronous sedimentation in Gonjo Basin,southeast Tibet in response to India-Asia collision constrained by magnetostratigraphy. Geochemistry,Geophysics,Geosystems, 22(3): e2020GC-009411. [119] Xiong Z Y,Ding L,Spicer R A,Farnsworth A,Wang X,Valdes P J,Su T,Zhang Q H,Zhang L Y,Cai F L,Wang H Q,Li Z Y,Song P P,Guo X D,Yue Y H.2020. The early Eocene rise of the Gonjo Basin,SE Tibet: from low desert to high forest. Earth and Planetary Science Letters, 54(3): 116312. [120] Xu H,Liu Y Q,Kuang H W,Peng N.2019. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation,Ningwu-Jingle Basin,Shanxi Province,China. Journal of Asian Earth Sciences, 174: 245-262. [121] Yin A,Harrison T M.2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. [122] Yu X C,Liu C L,Wang C L,Wang J Y.2021. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. Palaeogeography,Palaeoclimatology,Palaeoecology, 567: 110299. [123] Zhang J,Liu Y G,Fang X,Zhang T,Zhu C G,Wang C S.2021a. Elevation of the Gangdese Mountains and their impacts on Asian climate during the Late Cretaceous: a modeling study. Frontiers in Earth Science, 9(1): 12-70. [124] Zhang J,Liu Y G,Flögel S,Zhang T,Wang C S,Fang X M.2021b. Altitude of the East Asian coastal mountains and their influence on Asian climate during Early Late Cretaceous. Journal of Geophysical Research: Atmospheres, 126(22): e2020JD034413. [125] Zhang Y,Huang W T,Huang B C,Hinsbergen D V,Yang T,Dupont-Nivet G,Guo Z J.2018.53-43 Ma deformation of eastern Tibet revealed by three stages of tectonic rotation in the Gonjo Basin. Journal of Geophysical Research: Solid Earth, 123(5): 3320-3338. [126] Zhu D C,Wang Q,Cawood P A,Zhao Z D,Mo X X.2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. |