[1] 董志国,张连昌,王长乐,张帮禄,彭自栋,朱明田,冯京,谢月桥. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. [Dong Z G,Zhang L C,Wang C L,Zhang B L, Peng Z D, Zhu M T, Xie Y Q. 2020. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237-255] [2] 杜远生,周琦,余文超,王萍,袁良军,齐靓,郭华,徐源. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7. [Du Y S,Zhou Q,Yu W C,Wang P,Yuan L J,Qi L,Guo H,Xu Y. 2015. Linking the Cryogenian manganese metallogenic process in the southeast margin of Yangtze block to break-up of Rodinia super continent and Sturtian glaciation geological. Science and Technology Information, 34(6): 1-7] [3] 付勇,徐志刚,裴浩翔,江冉. 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207. [Fu Y,Xu Z G,Pei H X,Jiang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 88(12): 2192-2207] [4] 郭崑明,何安全,白国龙,严永邦,严鸿. 2018. 洪水河—清水河沉积变质型铁矿地质特征及矿床成因分析. 中国锰业, 36(3): 67-69. [Guo K M,He A Q,Bai G L,Yan Y B, Yan H. 2018. Geological characteristics and genetic analysis of sedimentary metamorphic iron ore deposits in Hongshuihe-qingshuihe. China Manganese Industry, 36(3): 67-69] [5] 李佐强. 2021. 东昆仑三通沟北地区中—新元古界万宝沟群锰矿成因分析. 成都理工大学硕士学位论文. [Li Z Q. 2021. Genesis of manganese deposit of Meso-Neoproterozoic Wanbaogou Group in Santonggoubei Area,East Kunlun. Masteral dissertation of Chengdu University of Technology] [6] 刘永乐,赵静纯,李文,张爱奎,夏友河,孙非非,张建平, 张连昌. 2022. 青海东昆仑三通沟北沉积锰矿地质特征及形成时代探讨. 地质科学: https://kns.cnki.net/kcms/detail/11.1937.P.20221108.1414.002.html. [Liu Y L,Zhao J C,Li W,Zhang A K,Xia Y H, Sun F F,Zhang J P,Zhang L C. 2022. Geological characteristics and discussion on formation age of Santonggoubei sedimentary manganese deposit in eastern Kunlun of Qinghai. Scientia Geologica Sinica,https://kns.cnki.net/kcms/detail/11.1937.P.20221108.1414.002.html] [7] 罗灿辉. 1993. 在沉积锰矿找矿勘探工作中应加强岩相古地理研究. 中国锰业,11(6): 3-7. [Luo C H. 1993. Paleogeography of peotrofactes in the exploration of sedimentary manganese deposit. China manganese industry,11(6): 3-7] [8] 夏文杰,雷建喜. 1989. 贵州松桃地区早震旦世大塘坡期沉积环境及锰矿成因. 成都地质学院学报, 16(1): 67-77,128. [Xia W J,Lei J X. 1989. Sedimentary environment of the Datangpo perriod in early Sinian and genesis of the manganese ores in Songtao district,Guizhou Province. Journal of Chengdu College of Geology, 16(1): 67-77,128] [9] 许效松,黄慧琼,刘宝珺,王砚耕. 1991. 上扬子地块早震旦世大塘坡期锰矿成因和沉积学. 沉积学报, 9(1): 63-71. [Xu X S,Huang H Q,Liu B J,Wang Y G. 1991. The sedimentary and origin of early Sinian manganese Deposits form the Datangpo formation,South China. Acta Sedminentologica Sinica, 9(1): 63-71] [10] 徐林刚. 2020. 沉积型锰矿床的形成及其与古海洋环境的协同演化. 矿床地质, 39(6): 959-973. [Xu L G. 2020. Sedimentary manganese formation and its link with paleo-oceanic environment. Mineral Deposits, 39(6): 959-973] [11] 叶连俊. 1993. 叶连俊文集. 北京: 科学出版社. [Ye L J. 1993. Ye Lianjun' Collected Works. Beijing: Science Press] [12] 余文超,杜远生,周琦,王萍,齐靓,徐源,靳松,潘文,袁良军,谢小峰,杨炳南. 2020. 华南成冰纪“大塘坡式”锰矿沉积成矿作用与重大地质事件的耦合关系. 古地理学报, 22(5): 855-871. [Yu W C,Du Y S,Zhou Q,Wang P,Qi L,Xu Y,Jin S,Pan W,Yuan L J,Xie X F,Yang B N. 2020. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events. Journal of Palaeogeography(Chinese Edition), 22(5): 855-871] [13] 杨瑞东,高军波,程玛莉,魏怀瑞,许利群,文雪峰,魏晓. 2010. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征. 地质学报, 84(12): 1781-1790. [Yang R D,Gao J B,Cheng M L,Wei H R,Xu L Q,Wen X F,Wei X. 2010. Sedimentary geochemistry of manganese deposit of the Neoproterozoic Datangpo formation in Guizhou Province,China. Acta Geologica Sinica, 84(12): 1781-1790] [14] 赵东旭. 1990. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积. 地质科学, 25(2): 149-157. [Zhao D X. 1990. Intraclastic structures and gravity flow sedimentatiom of Rhodochrosite ore in Sinian Datangpo Formation. Scientia Geologica Sinica, 25(2): 149-157] [15] 张飞飞,闫斌,郭跃玲,朱祥坤,周琦,杨德智. 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245-258. [Zhang F F,Yan B,Guo Y L,Zhu X K,Zhou Q,Yang D Z. 2013. Precipitation form of manganese ore deposits in Gucheng,Hubei Province,and its paleoenvironment implication. Acta Geologica Sinica,87(2): 245-258] [16] 张连昌,张帮禄,董志国,谢月桥,李文君,彭自栋,朱明田,王长乐. 2020. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件. 吉林大学学报(地球科学版), 50(5): 1340-1357. [Zhang L C,Zhang B L,Dong Z G. Xie Y Q,Li W J,Peng Z D,Zhu M t,Wang C L. 2020. Tectonic setting and metallogenetic conditions of Carboniferous Malkansu giant manganese belt in West Kunlun Orogen. Journal of Jilin University(Earth Science Edition), 50(5): 1340-1357] [17] 张连昌,董志国,张帮禄,李文君,彭自栋,王长乐,朱明田. 2022. 西昆仑“玛尔坎苏式”富锰矿主控因素及成矿模式. 地质学报, 96(9): 3195-3210. [Zhang L C,Dong Z G,Zhang B L,Li W J,Peng Z D,Wang C L,Zhu M T. 2022. Controlling factors and “Malkansu style”metallogenetic model of high grade manganese ore in West Kunlun orogen. Acta Geologica Sinica, 96(9): 3195-3210] [18] 赵静纯,代威,屈光菊,李有录. 2020. 青海都兰县三通沟北地区锰矿地质特征及找矿前景. 矿产勘查, 11(7): 1372-1378. [Zhao J C,Dai W,Qu G J,Li Y L. 2020. Geological characteristics and prospecting potentiality of north Santonggou manganese deposit in Dulan County,Qinghai Province. Mineral Exploration, 11(7): 1372-1378] [19] 周琦,杜远生,袁良军,张遂,余文超,杨胜堂,刘雨. 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188. [Zhou Q,Du Y S,Yuan L J,Zhang S,Yu W C,Yang S T,Liu Y. 2016. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area,South China. Earth Sciences, 41(2): 177-188] [20] Bau M,Koschinsky A. 2009. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43: 37-47. [21] Bau M,Schmidt K,Koschinsky A,Hein J, Kuhn T, Usui A. 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381: 1-9. [22] Dahl T W,Hammarlund E U,Anbar A D,Bond D P,Gill B C,Gordon G W,Knoll A H,Nielsen A T,Schovsbo N H,Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107(42): 17911-17915. [23] Dong Z G,Peng Z D,Wang C L,Zhang B L,Zhang L C,Li J,Zhang X,Li W J, Zhang L2022. Insight into the genesis of the Zhaosu Carboniferous Mn carbonate deposit(NW China): constraints from petrography,geochemistry,and C-Mo isotopes. Mineralium Deposita, 57: 1269-1289. [24] Fan D L,Ye J,Li J. 1999. Geology,mineralogy,and geochemistry of the Middle Proterozoic Wafangzi ferromanganese deposit,Liaoning Province,China. Ore Geology Reviews,115(1/2/3): 31-53. [25] Force E R,Cannon W F. 1988. Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology, 83(1): 93-117. [26] Frakes L,Bolton B R. 1984. Origin of manganese giants: sea-level change and Anoxic-Oxic history. Geology, 12(2): 83-86. [27] Frakes L A,Bolton B R. 1992. Effects of ocean chemistry,sea level,and climate on the formation of primary sedimentary manganese ore deposits. Economic Geology, 87(5): 1207-1217. [28] Huckriede H,Meischner D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta, 60(8): 1399-1413. [29] Jones B,Manning D A C. 1994. Comparison of geochemical Indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129. [30] Maynard J B. 2010. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments. Economic Geology, 105: 535-552. [31] Maynard J B. 2014. Manganiferous Sediments,Rocks,and Ores. In: MacKenzie F T(ed). Treatise of Geochemistry 2nd Edition. Sediments,Diagenesis,and Sedimentary Rocks. Elsevier,Amsterdam, 9: 327-349. [32] Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3-4): 213-232. [33] Okita P M. 1992. Manganese carbonate mineralization in the Molango District,Mexico. Economic Geology, 87(5): 1345-1366. [34] Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews, 77(4): 273-305. [35] Tostevin R,Shields G A,Tarbuck G M,He T C, Clarkson M O, Wood R A. 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438: 146-162. [36] Tribovillard N,Algeo T J,Lyons T, Riboullean A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12-32. [37] Wallace M W,Hood A V,Shuster A,Greig A, Planavsky N J, Reed C P. 2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466: 12-19. [38] Wignall P B,Twitchett R J. 1996. Oceanic anoxia and the End Permian mass extinction. Science, 272(5265): 1155-1158. [39] Yu W C,Algeo T J,Du Y S,Maynard B,Guo H,Zhou Q,Peng T P,Wang P,Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 321-337. [40] Zhang B L,Wang C L,Robbins L J,Zhang L C,Konhauser K O,Dong Z G,Li W J,Peng Z D,Zheng M T. 2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in western Kunlun Mountains, Xinjiang Province,China: implications for the depositional environment and the orgin of mineralization. Economic Geology, 115(7): 1559-1588. |