[1] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报,6(1):3-19. [Feng Z Z. Singer factor analysis and multifacter comprehensive mapping method: Reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition),6(1):3-19] [2] 冯增昭. 2013. 中国沉积学(第二版). 北京:石油工业出版社. [Feng Z Z. 2013. Sedimentology of China(Second Edition). Beijing: Petroleum Press] [3] 梅冥相. 2010. 长周期层序形成机制的探索:层序地层学的进展之二. 古地理学报,12(6):711-728. [Mei M X. 2010. Research on formingmechanism of long-term sequences:The second advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition),12(6):711-728] [4] 梅冥相. 2011a. 微生物席沉积学:一个年轻的沉积学分支. 地球科学进展,26(6):586-597. [Mei M X. 2011a. Microbial-mat sedimentology:A young branch on Sedimentology. Advances in Earth Sciences,26(6):586-597] [5] 梅冥相. 2011b. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评,57(3):419-436. [Mei M X. 2011b. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geological Review,57(3):419-436] [6] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题. 地质论评,58(5):937-951. [Mei M X. 2012. Organomineralization derived from the biomineralization:An important theme within the framework of geobiology. Geological Review,58(5):937-951] [7] 梅冥相. 2014. 微生物席的特征和属性:微生物席沉积学的理论基础. 古地理学报,16(3):285-304. [Mei M X. 2014. Feature and nature of microbial-mat:Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition),16(3):285-304] [8] 梅冥相,高金汉. 2015. 光合作用的起源:一个引人入胜的重大科学命题. 古地理学报,17(5):577-592. [Mei M X,Gao J H. 2015. The origin of photosynthesis:An enchanting and important scientific theme. Journal of Palaeogeography(Chinese Edition),17(5):577-592] [9] 梅冥相,刘少峰. 2013. 陆生植被对河流沉积作用的影响:生物沉积作用研究的一个重要主题. 古地理学报,15(1):1-10. [Mei M X,Liu S F. 2013. The sedimentological impact of the terrestrial vegetation to fluvial sedimentation:An important theme on studies of biosedimentation. Journal of Palaeogeography(Chinese Edition),15(1):1-10] [10] 梅冥相,孟庆芬. 2015. 太古宙氧气绿洲:地球早期古地理重塑的重要线索. 古地理学报,17(6):719-734. [Mei M X,Meng Q F. 2015. Archean oxygen oases:An important clue of palaogeographical reconstruction in the early Earth. Journal of Palaeogeography(Chinese Edition),17(6):719-734] [11] 梅冥相,孟庆芬. 2016. 大气圈氧气上升的时间进程:一个与地球动力学过程紧密相关的地球生物学过程. 古地理学报,18(1):1-20. [Mei M X,Meng Q F. 2016. The timing for the rise of atmospheric oxygen:A sophisticated geobiological process that is closely and genetically related to the geodynamics. Journal of Palaeogeography(Chinese Edition),18(1):1-20] [12] 梅冥相,孟庆芬,刘智荣. 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报,9(4):353-364. [Mei M X,Meng Q F,Liu Z R. 2007. Overview of advances in studies of primary sedimentary structures formed by microbes. Journal of Palaeogeography(Chinese Edition),9(4):353-364] [13] 谢树成,殷鸿福,史晓颖. 2011. 地球生物学:生物与地球环境的相互作用与协同演化. 北京:科学出版社. [Xie S C,Ying H F,Shi X Y. 2011. Geobiology:Interaction and Synergetic Evolution between the Earth’s Environment and the Life. Beijing:Science Press] [14] 徐桂荣,王永标,龚淑云,袁伟. 2005. 生物与环境的协同演化. 湖北武汉:中国地质大学出版社. [Xu G R,Wang Y B,Gong S Y,Yuan W. 2005. Synergetic Evolution of Organism and Envirenment. Hubei Wuhan:Press of China University of Geosciences] [15] 殷鸿福,杨逢清,谢树成,王永标,王红梅,彭元桥. 2004. 生物地质学. 湖北武汉:中国地质大学出版社. [Ying H F,Yang F Q,Xie S C,Wang Y B,Wang H M,Peng Y Q. 2004. Biogeology. Hubei Wuhan:Press of China University of Geosciences] [16] Albani A E,Bengtson S,Canfield D E,Bekker A,Macchiarelli R,Mazurier A,Hammarlund E U,Boulvais P,Dupuy J~J,Fontaine C,Fürsich F T,Gauthier~Lafaye F,Janvier P,Javaux E,Ossa F O,Pierson-Wickmann A~C,Riboulleau A,Sardini P,Vachard D,Whitehouse M,Meunier A. 2010. Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature,466:100-104. [17] Allègre C J,Manhès G,G?pel C. 1995. The age of the Earth. Geochimica et Cosmochimica Acta,59:1445-1456. [18] Allwood A C,Walter M R,Kamber B S,Marshall C P,Burch I W. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature,441:714-718. [19] Altermann W. 2008. Accretion,trapping and binding of sediment in Archaean stromatolites:Morphological expression of the antiquity of life. Space Sciences Reviews,135:55-79. [20] Amelin Y,Connelly J,Zartman R E,Chen J H,Gopel C,Neymark L A. 2009. Modern U-Pb chronometry of meteorites:Advancing to higher time resolution reveals new problems. Geochimica et Cosmochimica Acta,73:5212-5223. [21] Anbar A D,Duan Y,Lyons T W,Arnold G L,Kendall B,Creaser R A,Kaufman A J,Gordon G W,Scott C,Garvin J,Buick R. 2007. A whiff of oxygen before the Great Oxidation Event?. Science,317:1903-1906. [22] Anders E,Grevesse N. 1989. Abundances of the elements:Meteoritic and solar. Geochimica et Cosmochimica Acta,53:197-214. [23] Arnold G L,Anbar A D,Barling J,Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science,304:87-90. [24] Aspler L B,Chiarenzelli J R. 1998. Two Neoarchean supercontinents?Evidence from the Paleoproterozoic. Sedimentary Geology,120:75-104. [25] Awramik S M. 2006. Respect for stromatolites. Nature,441:700-701. [26] Bao H,Lyons J R,Zhou C. 2008. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature,453:504-506. [27] Barber J. 2008. Photosynthetic generation of oxygen. Philosophical Transaction of the Royal Society(B),363:2665-2674. [28] Barley M E,Bekker A,Krapez B. 2005. Late Archean to early Paleoproterozoic global tectonics,environmental change and the rise of atmospheric oxygen. Earth and Planetary Science Letters,238:156-171. [29] Barrow J D,Tipler F J. 1986. The Anthropic Cosmological Principle. Oxford:Oxford University Press. [30] Bekker A,Holland H D,Wang P L,Rumble D R,Stein H J,Hannah J L,Coetzee L L,Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature,427:117-120. [31] Berman R G,Sanborne-Barrie M,Rayner N,Carson C,Sandeman H A,Skulski T. 2010. Petrological and in situ SHRIMP geochronological constraints on the tectonometamorphic evolution of the Committee Bay belt,Rae Province,Nunavut. Precambrian Research,181:1-20. [32] Berner R A. 2006. GEOCARBSULF:A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta,70:5653-5664. [33] Berner R A,Beerling D J,Dudley R,Robinson J M,Wildman R A. 2003. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences,31:105-134. [34] Bjerrum C J,Canfield D E. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature,417:159-162. [35] Blank C E,S??nchez-Baracaldo P. 2010. Timing of morphological and ecological innovations in the Cyanobacteria:A key to understanding the rise in atmospheric oxygen. Geobiology,8:1-23. [36] Blichert-Toft J,Arndt N T. 1999. Hf isotope compositions of komatiites. Earth and Planetary Science Letters,171:439-451. [37] Bouvier A,Wadhwa M. 2010. The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geosciences,3:637-641. [38] Buick R. 2007. Did the Proterozoic‘Canfield Ocean’ cause a laughing gas greenhouse?. Geobiology,5:97-100. [39] Buick R. 2008. When did oxygenic photosynthesis evolve?. Philosophical Transaction of the Royal Society(B),363:2731-2743. [40] Butterfield,N J. 2009. Oxygen,animals and ocean ventilation:An alternate view. Geobiology,7:1-7. [41] Cameron E M. 1982. Sulphate and sulphide reduction in early Precambrian oceans. Nature,296:145-148. [42] Campbell I H,Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geosciences,1:554-558. [43] Campbell I H,Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen:The second great oxidation event. Geochimica et Cosmochimica Acta,74:4187-4206. [44] Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature,396:450-453. [45] Canfield D E. 2004. The evolution of the Earth surface sulphur reservoir. American Journal of Science,304:839-861. [46] Canfield D E. 2005. The early history of atmospheric oxygen:Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science,33:1-36. [47] Canfield D E,Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature,382:127-132. [48] Canfield D E,Poulton S W,Narbonne G M. 2007. Late-Neoproterozoic Deep-Ocean oxygenation and the rise of animal life. Science,315:92-95. [49] Canfield D F,Habicht K S,Thamdrup B. 2000. The Archean sulphur cycle and the early history of atmospheric oxygen. Science,288:658-661. [50] Catling D,Zahnle K. 2002. Evolution of atmospheric oxygen. In:Holton J,Pyle J,Curry J. Encyclopedia of atmospheric sciences. Amsterdam:Academic Press,754-761. [51] Catling D C,Glein C R,Zahnle K J,McKay C P. 2005. Why O2 is required by complex life on habitable planets and the concept of planetary‘oxygenation time’?. Astrobiology,5:415-438. [52] Catling D C,Zahnle K J,McKay C P. 2001. Biogenic methane,hydrogen escape,and the irreversible oxidation of early Earth. Science,293:839-843. [53] Condie K C,O’Neill C,Aster R C. 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters,282:294-298. [54] Crowe S A,D?ssing L N,Beukes N J,Bau M,Kruger S J,Frei R,Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature,501:535-539. [55] Davies G F. 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters,36:363-380. [56] Delano J W. 2001. Redox history of the Earth’s interior since~3900,Ma:Implications for prebiotic molecules. Origins of Life and Evolution of Biospheres,31:311-341. [57] Eriksson P G,Catuneanu O,Nelson D R,Rigby M J,Bandopadhyay P C,Altermann W. 2010. Events in the Precambrian history of the Earth:Challenges in discriminating their global significance. Marine and Petroleum Geology,30:1-18. [58] Ernst W G. 2009. Archean plate tectonics,rise of Proterozoic supercontinentality and onset of regional episodic stagnant~lid behaviour. Gondwana Research,15:243-253. [59] Erwin D H,Laflamme M,Tweedt S,Sperling E A,Pisani D,Peterson K J. 2011. The Cambrian conundrum:Early divergence and later ecologicalsuccess in the early history of animals. Science,334:1091-1097. [60] Falkowski P G,Godfrey L V. 2008. Electrons,life and the evolution of Earth’s oxygen cycle. Philosophical Transaction of the Royal Society(B),363:2705-2716. [61] Falkowski P G,Isozaki Y. 2008. The Story of O2. Science,322:540-542. [62] Falkowski P G,Katz M E,Milligan A J,Fennel K,Cramer B S,Aubry M-P,Berner R A,Novacek M J,Zapol W M. 2005. The rise of oxygen over the past 205,million years and the evolution of large placental mammals. Science,309:2202-2204. [63] Farquhar J,Bao H,Thiemens,M. 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science,289:756-758. [64] Farquhar J,Wing B A. 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters,213:1-13. [65] Farquhar J,Peters M,Johnston D T,Strauss H,Masterson A,Wiechert U,Kaufman A J. 2007. Isotopic evidence for Mesoarchaean anoxia and changing sulphur chemistry. Nature,449:706-709. [66] Fike D A,Grotzinger J P,Pratt L M,Summons R E. 2006. Oxidation of the Ediacaran Ocean. Nature,444:744-747. [67] Flament N,Coltice N,Rey P F. 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth and Planetary Science Letters,275:326-336. [68] French J E,Heaman L M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton,India:Implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Research,183:416-441. [69] Gaidos E. 2010. The biogeochemical context of animal origins. In:DeSalle R,Schierwater B. Key Transitions in Animal Evolution. Boca Raton of Florida:CRC Press,345-359. [70] Gaidos E,Dubuc T,Dunford M,McAndrew P,Padilla-Gami?o J,Studer B,Weersing K,Stanley S. 2007. The Precambrian emergence of animal life:A geobiological perspective. Geobiology,5:351-373. [71] Goldblatt C,Lenton T M,Watson A J. 2006. Biostability of atmospheric oxygen and the Great Oxidation. Nature, 443:683-686. [72] Grotzinger J P,Fike D A,Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geoscience,4:285-292. [73] Halverson G P,Hurtgen M T. 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters,263:32-44. [74] Han T-M,Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1~billion~year~old Negaunee Iron-Formation,Michigan. Science,257:232-235. [75] Hayes J M,Waldbauer J R. 2006. The carbon cycle and associated redox processes through time. Philosophical Transaction of the Royal Society(B),361:931-950. [76] Hoashi M,Bevacqua D C,Otake T,Watanabe Y,Hickman A H,Utsunomiya S,Ohmoto H. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geosciences,2:301-306. [77] Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton:Princeton University Press. [78] Holland H D. 2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta,66:3811-3826. [79] Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal(B),361:903-915. [80] Holland H D. 2009. Why the atmosphere became oxygenated:A proposal. Geochimica et Cosmochimica Acta,73:5241-5255. [81] Holm N G,Neubeck A. 2009. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. Geochemical Transactions,10:1-9. [82] Holm N G,Dumont M,Ivarsson M,Konn C. 2006. Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents:A hypothesis. Geochemical Transactions,7:1-7. [83] Hurtgen M T,Arthur M A,Halverson G P. 2005. Neoproterozoic sulfur isotopes,the evolution of microbial sulfur species,and the burial efficiency of sulfide as sedimentary sulfide. Geology,33:41-44. [84] Javaux E J,Knoll A H,Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology,2:121-132. [85] Johnson C M,Beard B L,Klein C,Beukes N J,Roden E E. 2008b. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta,72:151-169. [86] Johnson C M,Beard B L,Roden E E. 2008a. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annual Reviews of Earth and Planetary Sciences,56:457-493. [87] Johnston D T,Goldberg T,Poulton S W,Sergeev V N,Podkovyrov V,Vorob’eva N G,Bekker A,Knoll A H. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters,335-336:25-35. [88] Kah L C,Bartley J K. 2011. Protracted oxygenation of the Proterozoic biosphere. International Geology Review,53:1424-1442. [89] Karhu J A,Holland H D. 1996. Carbon isotopes and the rise of atmospheric oxygen. Geology,24:867-870. [90] Kasting J F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research,34:205-229. [91] Kasting J F. 1993. Earth’s early atmosphere. Science,259:920-926. [92] Kasting J F. 2005. Methane and climate during the Precambrian era. Precambrian Research,137:119-129. [93] Kaufman A J,Johnston D T,Farquhar J,Masterson A L,Lyons T W,Bates S,Anbar A D. ,Arnold G L,Garvin J,Buick R. 2008. Late Archean biospheric oxygenation and atmospheric evolution. Science,317:1900-1903. [94] Keeling R F,Bender M L,Najjar R G,Tans P P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles,7:37-67. [95] Kirschvink J L,Gaidos E J,Bertani L E,Beukes N J,Gutzmer J,Maepa L N,Steinberger R E. 2000. Paleoproterozoic snowball Earth:Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences,97:1400-1405. [96] Knoll A H. 1992. The early evolution of Eukaryotes. A geological perspective. Science,256:622-625. [97] Knoll A H. 2003. Life on a Young Planet:The First Three Billion Years of Evolution on Earth. Princeton:Princeton University Press,1-277. [98] Knoll A H. 2013. Systems paleobiology. GSA Bulletin,125:3-13. [99] Knoll A H,Carroll S B. 1999. Early animal evolution:Emerging views from comparative biology and geology. Science,284:2129-2137. [100] Konhauser K O,Pecoits E,Lalonde S V,Papineau D,Nisbet E G,Barley M E,Arndt N T,Zahnle K,Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature,458:750-753. [101] Kopp R E,Kirschvink J L,Hilburn I A,Nash C Z. 2005. The Paleoproterozoic snowball Earth:A climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences,102:11131-11136. [102] Kramers J D. 2007. Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society,164:3-17. [103] Kump L R. 2008. The rise of atmospheric oxygen. Nature,451:277-278. [104] Kump L R,Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature,448:1033-1036. [105] Kump L R,Junium C,Arthur M A,Brasier A,Fallick A,Melezhik V,Lepland A,C ne A E,Luo Genming. 2011. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science,334:1694-1696. [106] Landuyt W,Bercovici D. 2009. Variations in planetary convection via the effect of climate on damage. Earth and Planetary Science Letters,277:29-37. [107] Lenardic A,Jellinek A M,Moresi L-N. 2008. A climate induced transition in the tectonic style of a terrestrial planet. Earth and Planetary Science Letters,271:34-42. [108] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X. 2010. A stratified redox modelfor the Edicaran ocean. Science,328:80-83. [109] Li Z X,Bogdanova S V,Collins A S,Davidson A,DeWaele B,Ernst R E,Fitzsimons C W,Fuck R A,Gladkochub D P,Jacons J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration and break-up history of Rodinia:A synthesis. Precambrian Research,160:179-210. [110] Li Z X,Evans D A D,Halverson G P. 2013. Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sedimentary Geology,294:219-232. [111] Lindsay J F,Brasier M D. 2002. Did global tectonics drive early biosphere evolution?Carbon isotope record from 2.6 to 1.9,Ga carbonates of Western Australian basins. Precambrian Research,114:1-34. [112] Lovley D R. 2004. Potential role of dissimilatory iron reduction in the early evolution of microbial respiration. In:Seckbach J. Origins,Evolution,and Biodiversity of Microbial Life. Amsterdam:Kluwer,301-313. [113] Love G D,Grosjean E,Stalvies C,Fike D A,Grotzinger J P,Bradley A S,Kelly A E,Bhatia M,Meredith W,Snape C E,Bowring S A,Condon D J,Summons R E. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature,457:718-721. [114] Maloof A C,Rose C V,Beach R,Samuels B M,Calmet C C,Erwin D H,Poirier G R,Yao N,Simons F J. 2010. Possible animalebody fossils in pre-Marinoan limestones from South Australia. Nature Geoscience,3:653-659. [115] Martin W,Russell M J. 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society(Series B),362:1887-1925. [116] Matte P. 2001. The Variscan collage and orogeny(480-290,Ma)and the tectonic definition of the Armorica microplate:A review. Terra Nova,13:122-128. [117] McFadden K A,Huang J,Chu X,Jiang G,Kaufman A J,Zhou C,Yuan X,Shuhai X. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Science,105:3197-3202. [118] Melezhik V A. 2006. Multiple causes of Earth’s earliest global glaciation. Terra Nova,18:130-137. [119] Melezhik V A,Fallick A E,Hanski E J,Kump L R,Lepland A,Prave A R,Srauss H. 2005. Emergence of the aerobic biosphere during the Archean-Proterozoic transition:Challenges of future research. GSA Today,15:4-11. [120] Melezhik V A,Huhma H,Condon D J,Fallick A E,Whitehouse M J. 2007. Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology,35:655-658. [121] Meyer K M,Kump L R. 2008. Oceanic euxinia in Earth history:Causes and consequences. Annual Review of Earth and Planetary Sciences,36:251-288. [122] Narbonne G M. 2005. The Ediacara biota:Neoproterozoic origin of animals and their ecosystems. Annual Reviews of Earth and Planetary Sciences,33:421-442. [123] Narbonne G M,Xiao S,Shields G A. 2012. The Ediacaran Period(Chapter 18). In:Gradstein F M,Ogg J G,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,413-435. [124] Neuweiler F,Turner E C,Burdige D J. 2009. Early Neoproterozoic origin of the metazoan clade recorded in carbonate rock texture. Geology,37:475-478. [125] Nisbet E G,Grassineau N V,Howe C J,Abell P Ⅰ,Regelous M,Nisbet R. E R. 2007. The age of Rubisco:The evolution of oxygenic photosynthesis. Geobiology,5:311-335. [126] Nyquist L E,Kleine T,Shih C-Y,Reese Y D. 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion,differentiation,and secondary mineralization. Geochimica et Cosmochimica Acta,73:5115-5136. [127] O’Neil J,Maurice C,Stevenson R K,Larocque J,Cloquet C,David J,Francis D. 2007. The geology of the 3.8,Ga Nuvvuagittuq(Porpoise Cove)greenstone belt,northeastern Superior Province,Canada. In:Van Kranendonk,M J,Smithies R H,Bennet V. Earth’s Oldest Rocks(Developments in Precambrian Geology,15). Amsterdam:Elsevier,219-250. [128] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling. Earth-Science Reviews,110:26-57. [129] Ohmoto H, Watanabe Y, Kumazawa K. 2004. Evidence from massive siderite beds for a CO2-rich atmosphere before~1.8 billion years ago. Nature,429:395-399. [130] Olson J M,Blankenship R E. 2004. Thinking about the evolution of photosynthesis. Photosynthesis Research,80:373-386. [131] Olson S L,Kump L R,Kasting J F. 2013. Quantifying the areal extent and dissolvedoxygen concentrations of Archean oxygen oases. Chemistry Geology,362:35-43. [132] Ono S,Beukes N J,Rumble D,Fogel M L. 2006. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9,Ga Mozaan Group of the Pongola Supergroup,Southern Africa. South African Journal of Geology,107:97-108. [133] Parnell J,Boyce A J,Mark D,Bowden S,Spinks S. 2010. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature,468:290-293. [134] Pavlov A A,Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:Strong evidence for an anoxic Archean atmosphere. Astrobiology,2:27-41. [135] Payne J L,McClain C R,Boyer A G,Brown J H,Finnegan S,Kowalewski M,Krause Jr R A,Lyons S K,McShea D W,Novack-Gottshall P M,Smith F A,Spaeth P,Stempien J A,Wang S C. 2011. The evolutionary consequences of oxygenic photosynthesis:A body size perspective. Photosynthesis Research,107:37-57. [136] Poulton S W,Canfield D E. 2011. Ferruginous Conditions: A dominant feature of the ocean through Earth’s history. Elements,7:107-112. [137] Poulton S W,Fralick P W,Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience,3:486-490. [138] Rasmussen B,Buick R. 1999. Redox state of the Archean atmosphere:Evidence from detrital heavy minerals in ca. 3250-2750,Ma sandstones from the Pilbara Craton,Australia. Geology,27:115-118. [139] Reddy S M,Evans D A D. 2009. Paleoproterozoic supercontinents and global evolution:Correlations from core to atmosphere. In:Reddy S M,Mazumder R,Evans D A D,Collins A S. Paleoproterozoic Supercontinents and Global Evolution. Geological Society Special Publication,323:1-23. [140] Riding R,Fralick P,Liang L Y. 2014. Identification of an Archean marine oxygen oasis. Precambrian Research,251:232-237. [141] Rogers J J W,Santosh M. 2002. Configuration of Columbia,a Mesoproterozoic supercontinent. Gondwana Research,5:5-22. [142] Rosing M T,Bird D K,Sleep N H,Glassley W,Albarede F. 2006. The rise of continents e an essay on the geologic consequences of photosynthesis. Palaeogeography,Palaeoclimatology,Palaeoecology,232:233-265. [143] Rouxel O J,Bekker A,Edwards K J. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science,207:1088-1091. [144] Russell M J,Hall A J. 2006. The onset and early evolution of life. In:Kesler S E,Ohmoto H. Evolution of Earth’s Atmosphere,Hydrosphere,and Biosphere: Constraints from Ore Deposits. Geological Socierty of America(Memoir)198:1-32. [145] Russell M J,Hall A J,Martin W. 2010. Serpentinization as a source of energy at the origin of life. Geobiology,8:355-371. [146] Rye R,Holland H D. 1998. Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science,298:621-672. [147] Santosh M,Wilde S A,Li J H. 2007. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the north China Craton:Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research,159:178-196. [148] Saul J M. 2009. Did detoxification processes cause complex life to emerge?. Lethaia,42:179-184. [149] Schopf J W. 2011. The paleobiological record of photosynthesis. Photosynthesis Research,107,87-101. [150] Scott A C,Lyons T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,452:456-459. [151] Sessions A L,Doughty D M,Welander P V,Summons R E,Newman D K. 2009. The continuing puzzle of the Great Oxidation Event. Current Biology,19:567-574. [152] Shen Y N,Canfield D E,Knoll A H. 2002. Middle Proterozoic ocean chemistry:Evidence from the McArthur basin,northern Australia. American Journal of Science,302:81-109. [153] Shen Yanan,Knoll,A H,Walter,M R. 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature,423:632-634. [154] Shields-Zhou G,Och L. 2011. The case for a Neoproterozoic oxygenation event:Geochemical evidence and biological consequences. GSA Today,21:4-11. [155] Shields-Zhou G, Hill A C,Macgabhann B A. 2012. The Cryogenian Period(Chapter 17). In:Gradstein F M,Ogg J G,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,393-411. [156] Siebert C,Kramers J D,Meisel T,Morel P,N?gler T F. 2005. PGE,Re-Os,and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochimica et Cosmochimica Acta,69:1787-1801. [157] Slack J F,Cannon WF. 2009. Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology,37:1011-1014. [158] Sperlinga E A,Frieder C A,Raman A V,Girguis P R,Levin L A,Knoll A H. 2013. Oxygen,ecology,and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences,110:13446-13451. [159] Squire R J,Campbell I H,Allen C M,Wilson C J L. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth?. Earth and Planetary Science Letters,250:116-134. [160] Tzipermana E,Halevyb I,Johnstona D T,Knoll A H,Schraga D P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proceedings of the National Academy of Sciences,108:15091-15096. [161] Van Kranendonk M J,Altermann W,Beard B L,Hoffman P F,Johnson C M,Kasting J F,Melezhik V A,Nutman A P,Papineau D,Pirajno F. 2012. A chronostratigraphic division of the Precambrian. In:Gradstein F M,Ogg J G, Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,299-392. [162] Von Brunn V,Gold D J C. 1993. Diamictite in the Archaean Pongola Sequence of southern Africa. Journal of African Earth Sciences,16:367-374. [163] Wang X,Hu S,Gan L,Wiens M,Müller W E G. 2009. Sponges(Porifera)as living metazoan witnesses from the Neoproterozoic:Biomineralization and the concept of their evolutionary success. Terra Nova,22:1-11. [164] Wille M,Kramers J D,N?gler T F,Beukes N J,Schr?der S,Meisel T,Lacassie J P,Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5,Ga from Mo isotopes and Re-PGE signatures in shales. Geochimica et Cosmochimica Acta,71:2417-2435. [165] Williams G E. 2005. Subglacial meltwater channels and glaciofluvial deposits in the Kimberley Basin,Western Australia:1.8,Ga low-latitude glaciation coeval with continental assembly. Journal of the Geological Society of London,162:111-124. [166] Williams G E. 2008. Proterozoic(pre-Ediacaran)glaciation and the high obliquity,low-latitude ice,strong seasonality(HOLIST)hypothesis:Principles and tests. Earth-Science Reviews,87:61-93. [167] Yin L,Zhu M,Knoll A H,Yuan X,Zhang J,Hu J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature,446:661-663. [168] Young G M. 2002. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron~formations:Relevance to the snowball Earth debate. Journal of African Earth Sciences,35:451-466. [169] Young G M,von Brunn V,Gold D J C,Minter W E L. 1998. Earth’s oldest reported glaciation:Physical and chemical evidence from the Archean Mozaan Group(~2.9,Ga)of South Africa. Journal of Geology,106:523-538. [170] Yuan X,Chen Z,Xiao S,Zhou C,Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature,470:390-393. [171] Zahnle K J,Claire M W,Catling D C. 2006. The loss of mass-independent fractionation of sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology,4:271-283. [172] Zhao G C,Cawood P A,Wilde S A,Sun M. 2002. Review of global 2.1-1.8,Ga orogens:Implications for a pre-Rodinia supercontinent. Earth-Science Reviews,59:125-162.
|