[1] 操应长,杨田,王艳忠,张少敏,王思佳,张青青,王心怿. 2017a. 深水碎屑流与浊流混合事件层类型及成因机制. 地学前缘, 24(3): 234-248. [Cao Y C,Yang T,Wang Y Z,Zhang S M,Wang S J,Zhang Q Q,Wang X Y.2017a. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current. Earth Science Frontiers, 24(3): 234-248] [2] 操应长,杨田,王艳忠,李文强. 2017b. 超临界沉积物重力流形成演化及特征. 石油学报, 38(6): 607-621. [Cao Y C,Yang T,Wang Y Z,Li W Q.2017b. Formation,evolution and sedimentary characteristics of supercritical sediment gravity-flow. Acta Petrolei Sinica, 38(6): 607-621] [3] 陈亮,赵千慧,王英民,孙红军,万琼华,唐武,赵鹏. 2017. 盐构造与深水水道的交互作用: 以下刚果盆地为例. 沉积学报, 35(6): 1197-1204. [Chen L,Zhao Q H,Wang Y M,Sun H J,Wan Q H,Tang W,Zhao P.2017. Interactions between submarine channels and salt structures: examples from the lower Congo Basin. Acta Sedimentologica Sinica, 35(6): 1197-1204] [4] 龚承林,Ronald J.Steel,彭旸,王英民,李东伟. 2022. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292-318. [Gong C L,Steel R,Peng Y,Wang Y M,Li D W.2022. Major advances in deep-marine siliciclastic sequence stratigraphy,1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292-318] [5] 郭彦英,黄河清. 2013. 海底浊流在坡道转换处的流动及沉积的数值模拟. 沉积学报, 31(6): 994-1000. [Guo Y Y,Huang H Q.2013. Numerical simulation of the flow and deposition of turbidity currents with different slope changes. Acta Sedimentologica Sinica, 31(6): 994-1000] [6] 侯明才,杨田,田景春,蔡来星,李晓芳,何青,余文强. 2022. 吉尔伯特型三角洲沉积过程与沉积模式. 沉积学报.
https://doi.org/10.14027/j.issn.1000-0550.2022.084. [Hou M C,Yang T,Tian J C,Cai L X,Li X F,He Q,Yu W Q.2022. Formation Processes and Depositional Model of Gilbert-type Deltas. https://doi.org/10.14027/j.issn.1000-0550.2022.084.] [7] 李华,何明薇,邱春光,王英民,何幼斌,徐艳霞,何瑞武. 2023. 深水等深流与重力流交互作用沉积(2000—2022年)研究进展. 沉积学报, 41(1): 18-36. [Li H,He M W,Qiu C G,Wang Y M,He Y B,Xu Y X,He R W.2023. Research processes on deep-water interaction between contour current and gravity flow deposits,2000 to 2022. Acta Sedimentologica Sinica, 41(1): 18-36] [8] 李相博,卫平生,刘化清,王菁. 2013. 浅谈沉积物重力流分类与深水沉积模式. 地质论评, 59(4): 607-614. [Li X B,Wei P S,Liu H Q,Wang J.2013. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model. Geological Review, 59(4): 607-614] [9] 庞雄,陈长民,朱明,何敏,柳保军,申俊,连世勇. 2007. 深水沉积研究前缘问题. 地质论评, 53(1): 36-43. [Pang X,Chen W M,Zhu M,He M,Liu B J,Shen J,Lian S Y.2013. Frontier of the deep-water deposition study. Geological Review, 53(1): 36-43] [10] 田冬梅,姜涛. 2023. 深水水道沉积动力学发展现状与展望. 沉积学报. https://doi.org/10.14027/j.issn.1000-0550.2022.158. [Tian D M,Jiang T.2022. Research advances of depositional dynamics in submarine channels. https://doi.org/10.14027/j.issn.1000-0550.2022.158] [11] 汪品先. 2009. 深海沉积与地球系统. 海洋地质与第四纪地质, 29(4): 1-11. [Wang P X.2009. Deep Sea sediments and earth system. Marine Geology & Quaternary Geology, 29(4): 1-11] [12] 王大伟,白宏新,吴时国. 2018. 浊流及其相关的深水底形研究进展. 地球科学进展, 33(1): 52-65. [Wang D W,Bai H X,Wu S G.2018. The research progress of turbidity currents and related deep-water bedforms. Advances in Earth Science, 33(1): 52-65] [13] 王大伟,孙悦,司少文,吴时国. 2020. 海底周期阶坎研究进展与挑战. 地球科学进展, 35(9): 890-901. [Wang D W,Sun Y,Si S W,Wu S G.2020. Research progress and challenges of submarine cyclic steps. Advances in Earth Science, 35(9): 890-901] [14] 鲜本忠,安思奇,施文华. 2014. 水下碎屑流沉积: 深水沉积研究热点与进展. 地质论评, 60(1): 39-51. [Xian B Z,An S Q,Shi W H.2014. Subaqueous debris flow: hotspots and advances of deep-water sedimentation. Geological Review, 60(1): 39-51] [15] 杨宇平. 2020. 基于FLOW3D的浊流数值模拟研究. 哈尔滨工业大学硕士学位论文. [Yang Y P.2020. Numerical simulation of turbidity currents based on FLOW3D. Masteral dissertation of Harbin Institute of Technology] [16] 赵晓明,刘丽,谭程鹏,范廷恩,胡光义,张迎春,张文彪,宋来明. 2018. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲盆地陆坡区为例. 古地理学报, 20(5): 825-840. [Zhao X M,Liu L,Tan C P,Fan T E,Hu G Y,Zhang Y C,Zhang W B,Song L M.2018. Styles of submarine-channel architecture and its controlling factors: a case study from the Niger Delta Basin slope. Journal of Palaeogeography(Chinese Edition), 20(5): 825-840] [17] 钟广法. 2023. 超临界浊流之地貌动力学和沉积特征. 沉积学报, 41(1): 52-72. [Zhong G F.2023. Morphodynamics of supercritical turbidity currents and sedimentary characteristics of related deposits. Acta Sedimentologica Sinica, 41(1): 52-72] [18] Abhari M N,Iranshahi M,Ghodsian M,Firoozabadi B.2018. Experimental study of obstacle effect on sediment transport of turbidity currents. Journal of Hydraulic Research, 56(5): 618-629. [19] Alexander J,Morris S.1994. Observations on experimental,nonchannelized,high-concentration turbidity currents and variations in deposits around obstacles. Journal of Sedimentary Research,64(4a): 899-909. [20] Allen J R L.2012. Principles of Physical Sedimentology. Dordrecht: Springer,223-241. [21] Altinakar M S,Graf W H,Hopfinger E J.1996. Flow structure in turbidity currents. Journal of Hydraulic Research, 34: 713-718. [22] Amy L A,McCaffrey W D,Kneller B C.2004. The influence of a lateral basin-slope on the depositional patterns of natural and experimental turbidity currents. Geological Society,London,Special Publications, 221(1): 311-330. [23] Athmer W,Luthi S M.2011. The effect of relay ramps on sediment routes and deposition: a review. Sedimentary Geology, 242(1-4): 1-17. [24] Athmer W,Groenenberg R M,Luthi S M,Donselaar M E,Sokoutis D,Willingshofer E.2010. Relay ramps as pathways for turbidity currents: a study combining analogue sandbox experiments and numerical flow simulations. Sedimentology, 57(3): 806-823. [25] Azpiroz-Zabala M,Cartigny M J B,Talling P J,Parsons D R,Sumner E J,Clare M A,Simmons S M,Cooper C,Pope E L.2017. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science advances, 3(10): e1700200. [26] Badalini G,Kneller B C,Winker C D.2000. Architecture and processes in the late Pleistocene brazos-trinity turbidite system,gulf of Mexico continental slope. Deep-Water Reservoirs of the World: 20th Annual: Society of Economic Paleontologists: 16-34. [27] Baines P G.1979. Observations of stratified flow past three-dimensional barriers. Journal of Geophysical Research: Oceans,84(C12): 7834-7838. [28] Bastianon E,Viparelli E,Cantelli A,Imran J.2021.2D numerical simulation of the filling process of submarine minibasins: study of deposit architecture. Journal of Sedimentary Research, 91(4): 399-414. [29] Beaubouef R T,Friedmann S J.2000. High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins,western Gulf of Mexico;depositional models and reservoir analogs. Deep-Water Reservoirs of the World: 20th Annual: Society of Economic Paleontologists: 40-60. [30] Beaubouef R T,Abreu V,Van Wagoner J C.2003. Basin 4 of the Brazos-Trinity slope system,western Gulf of Mexico;the terminal portion of a late Pleistocene lowstand systems tract. Deep-Water Reservoirs of the World: 23rd Annual: Society of Economic Paleontologists: 45-66. [31] Beaubouef R T,Abreu V.2006. Basin 4 of the Brazos-Trinity slope system;anatomy of the terminal portion of an intra-slope lowstand systems tract: Transactions—Gulf Coast Association of Geological Societies, 56: 39-49. [32] Booth J R,DuVernay A E Ⅲ,Pfeiffer D S,Styzen M J.2000. Sequence stratigraphic framework,depositional models,and stacking patterns of ponded and slope fan systems in the Auger Basin;central Gulf of Mexico slope. Deep-Water Reservoirs of the World: 20th Annual: Society of Economic Paleontologists: 82-103. [33] Booth J R,Dean M C,DuVernay A E,Styzen M J.2003. Paleo-bathymetric controls on the stratigraphic architecture and reservoir development of confined fans in the Auger Basin: Central Gulf of Mexico slope. Marine and Petroleum Geology, 20: 563-586. [34] Bretis B,Bartl N,Grasemann B.2011. Lateral fold growth and linkage in the Zagros fold and thrust belt(Kurdistan,NE Iraq). Basin Research, 23(6): 615-630. [35] Buckee C,Kneller B C,Peakall J.2009. Turbulence structure in steady, solute-driven gravity currents. Particulate Gravity Currents. Oxford,UK: Blackwell Publishing Ltd., 173-187. [36] Callot J P,Salel J F,Letouzey J,Daniel J M,Ringenbach J C.2016. Three-dimensional evolution of salt-controlled minibasins: Interactions,folding and megaflap development. AAPG Bulletin, 100(9): 1419-1442. [37] Cartigny M J B,Ventra D,Postma G,van Den Berg J H.2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments. Sedimentology, 61(3): 712-748. [38] Cartwright J A,Trudgill B D,Mansfield C S.1995. Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17(9): 1319-1326. [39] Castro I P,Snyder W H.1993. Experiments on wave breaking in stratified flow over obstacles. Journal of Fluid Mechanics, 255: 195-211. [40] Clark I R,Cartwright J A.2009. Interactions between submarine channel systems and deformation in deepwater fold belts: examples from the Levant Basin,eastern Mediterranean Sea. Marine and Petroleum Geology, 26: 1465-1482. [41] Clark I R,Cartwright J A.2011. Key controls on submarine channel development in structurally active settings. Marine and Petroleum Geology, 28: 1333-1349. [42] Clark I R,Cartwright J A.2012. Interactions between coeval sedimentation and deformation from the Niger delta deepwater fold belt. Application of the Principles of seismic geomorphology to continental-slope and base-of-slope systems: case studies from seafloor and near-seafloor analogues. SEPM Special Publication,243-267. [43] Clayton C J.1993. Deflection versus reflection of sediment gravity flows in the late Llandovery Rhuddnant Grits turbidite system,Welsh Basin. Journal of the Geological Society, 150(5): 819-822. [44] Collignon M,Kaus B J P,May D A,Fernandez N.2014. Influences of surface processes on fold growth during 3-D detachment folding. Geochemistry,Geophysics,Geosystems, 15(8): 3281-3303. [45] Collignon M,Fernandez N,Kaus B J P.2015. Influence of surface processes and initial topography on lateral fold growth and fold linkage mode. Tectonics, 34(8): 1622-1645. [46] Cowie P A.1998. A healing-reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8): 1075-1087. [47] Cullen T M,Collier R E L,Gawthorpe R L,Hodgson D M,Barrett B J.2020. Axial and transverse deep-water sediment supply to syn-rift fault terraces: insights from the West Xylokastro Fault Block,Gulf of Corinth,Greece. Basin Research, 32(5): 1105-1139. [48] Cumberpatch Z A,Finch E,Kane I A,Pichel L M,Jackson C A L,Kilhams B A,Hodgson D M,Huuse M.2021a. Halokinetic modulation of sedimentary thickness and architecture: a numerical modelling approach. Basin Research, 33(5): 2572-2604. [49] Cumberpatch Z A,Finch E,Kane I A.2021b. External signal preservation in halokinetic stratigraphy: a discrete element modeling approach. Geology, 49(6): 687-692. [50] Doughty-Jones G,Mayall M,Lonergan L.2017. Stratigraphy,facies,and evolution of deep-water lobe complexes within a salt-controlled intraslope minibasin. AAPG Bulletin, 101(11): 1879-1904. [51] Doughty-Jones G,Lonergan L,Mayall M,Dee S.2019. The role of structural growth in controlling the facies and distribution of mass transport deposits in a deep-water salt minibasin. Marine and Petroleum Geology, 104: 106-124. [52] Edwards D A,Leeder M R,Best J L,Pantin H M.1994. On experimental reflected density currents and the interpretation of certain turbidites. Sedimentology, 41(3): 437-461. [53] Farizan A,Yaghoubi S,Firoozabadi B,Afshin H.2019. Effect of an obstacle on the depositional behaviour of turbidity currents. Journal of Hydraulic Research, 57(1): 75-89. [54] Fernandez N,Kaus B J P.2014. Fold interaction and wavelength selection in 3D models of multilayer detachment folding. Tectonophysics, 632: 199-217. [55] Fossen H,Rotevatn A.2016. Fault linkage and relay structures in extensional settings: a review. Earth-Science Reviews, 154: 14-28. [56] Gamboa D,Alves T M.2015. Spatial and dimensional relationships of submarine slope architectural elements: a seismic-scale analysis from the Espírito Santo Basin(SE Brazil). Marine and Petroleum Geology, 64: 43-57. [57] Garcia M,Parker G.1989. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition. Science, 245(4916): 393-396. [58] Gawthorpe R L,Hurst J M.1993. Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150(6): 1137-1152. [59] Gawthorpe R L,Leeder M R.2000. Tectono-sedimentary evolution of active extensional basins. Basin Research, 12: 195-218. [60] Ge Z Y,Nemec W,Gawthorpe R L,Hansen E W M.2017. Response of unconfined turbidity current to normal-fault topography. Sedimentology, 64: 932-959. [61] Ge Z Y,Nemec W,Gawthorpe R L,Rotevatn A,Hansen E W M.2018. Response of unconfined turbidity current to relay-ramp topography: insights from process-based numerical modelling. Basin Research, 30: 321-343. [62] Giles K,Rowan M.2012. Concepts in halokinetic-sequence Deformation and stratigraphy. In: Alsop G I,Archer S G,Hartley A J,Grant N T,Hodgkinson R(eds). Salt Tectonics,Sediments and Prospectivity. Geological Society,London,Special Publications, 363: 7-31. [63] Goodarzi D,Sookhak Lari K,Khavasi E,Abolfathi S.2020. Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations. Scientific Reports, 10(1): 12814. [64] Grasemann B,Schmalholz S M.2012. Lateral fold growth and fold linkage. Geology, 40(11): 1039-1042. [65] Gray T E,Alexander J,Leeder M R.2005. Quantifying velocity and turbulence structure in depositing sustained turbidity currents across breaks in slope. Sedimentology, 52(3): 467-488. [66] Grecula M,Flint S,Potts G,Wickens D,Johnson S.2003. Partial ponding of turbidite systems in a basin with subtle growth-fold topography: Laingsburg-Karoo,South Africa. Journal of Sedimentary Research, 73(4): 603-620. [67] Gupta A,Scholz C H.2000. A model of normal fault interaction based on observations and theory. Journal of Structural Geology, 22(7): 865-879. [68] Haughton P D W.1994. Deposits of deflected and ponded turbidity currents,sorbas basin,southeast Spain. Journal of Sedimentary Research,64(2a): 233-246. [69] Heiniö P,Davies R J.2006. Degradation of compressional fold belts: deep-water Niger delta. AAPG Bulletin, 90: 753-770. [70] Hesse S,Back S,Franke D.2010. The structural evolution of folds in a deepwater fold and thrust belt-a case study from the Sabah continental margin offshore NW Borneo,SE Asia. Marine and Petroleum Geology, 27: 442-454. [71] Higgins S,Davies R J,Clarke B.2007. Antithetic fault linkages in a deep water fold and thrust belt. Journal of Structural Geology, 29(12): 1900-1914. [72] Hiscott R N,Pickering K T.1984. Reflected turbidity currents on an Ordovician Basin floor,Canadian Appalachians. Nature, 311(5982): 143-145. [73] Hodgson D M,Peakall J,Maier K L.2022. Submarine channel mouth settings: processes,geomorphology,and deposits. Frontiers in Earth Science, 10: 74. [74] Howlett D M,Ge Z Y,Nemec W,Gawthorpe R L,Rotevatn A,Jackson C A L.2019. Response of unconfined turbidity current to deep-water fold and thrust belt topography: orthogonal incidence on solitary and segmented folds. Sedimentology, 66: 2425-2454. [75] Howlett D M,Gawthorpe R L,Ge Z Y,Rotevatn A,Jackson C A L.2021. Turbidites,topography and tectonics: evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin,offshore Angola. Basin Research, 33: 1076-1110. [76] Hudec M R,Jackson M P,Schultz-Ela D D.2009. The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins. Geological Society of America Bulletin, 121(1-2): 201-221. [77] Hughes Clarke J E.2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nature Communications, 7: 11896. [78] Hunt J C R,Snyder W H.1980. Experiments on stably and neutrally stratified flow over a model three-dimensional hill. Journal of Fluid Mechanics, 96: 671-704. [79] Imber J,Tuckwell G W,Childs C,Walsh J J,Manzocchi T,Heath A E,Bonson C G,Strand J.2004. Three-dimensional distinct element modelling of relay growth and breaching along normal faults. Journal of Structural Geology, 26(10): 1897-1911. [80] Jackson M P A, Hudec M R. 2017. Salt Tectonics: Principles and Practice. Cambridge: Cambridge University Press,155. [81] Johnson D.1939. The origin of submarine canyons: a critical review of hypotheses. The Geographical Journal, 96: 71. [82] Jolly B A,Lonergan L,Whittaker A C.2016. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70: 58-76. [83] Jolly B A,Whittaker A C,Lonergan L.2017. Quantifying the geomorphic response of modern submarine channels to actively growing folds and thrusts,deep-water Niger Delta. Geological Society of America Bulletin, 129(9-10): 1123-1139. [84] Khan S M,Imran J.2008. Numerical investigation of turbidity currents flowing through minibasins on the continental slope. Journal of Sedimentary Research, 78(4): 245-257. [85] Kneller B C.1995. Beyond the turbidite paradigm: physical models for deposition of turbidites and their implications for reservoir prediction. Geological Society,London,Special Publications, 94: 31-49. [86] Kneller B C,McCaffrey B.1993. Modelling the effects of salt-induced topography on deposition from turbidity currents. Salt,Sediment and Hydrocarbons: Gulf Coast Section SEPM, 1: 137-145. [87] Kneller B C,Branney M J.1995. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42(4): 607-616. [88] Kneller B C,McCaffrey W D.1999. Depositional effects of flow nonuniformity and stratification within turbidity currents approaching a bounding slope;deflection,reflection,and facies variation. Journal of Sedimentary Research, 69(5): 980-991. [89] Kneller B C,Buckee C.2000. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology, 47: 62-94. [90] Kneller B C,Edwards D,McCaffrey W D,Moore R.1991. Oblique reflection of turbidity currents. Geology, 19(3): 250-252. [91] Kneller B C,Bennett S J,McCaffrey W D.1999. Velocity structure,turbulence and fluid stresses in experimental gravity currents. Journal of Geophysical Research: Oceans, 104: 5381-5391. [92] Komar P D.1971. Hydraulic jumps in turbidity currents. Geological Society of America Bulletin, 82(6): 1477-1488. [93] Kostic S,Parker G.2006. The response of turbidity currents to a canyon-fan transition: internal hydraulic jumps and depositional signatures. Journal of Hydraulic Research, 44: 631-653. [94] Kostic S,Parker G.2007. Conditions under which a supercritical turbidity current traverses an abrupt transition to vanishing bed slope without a hydraulic jump. Journal of Fluid Mechanics, 586: 119-145. [95] Kuenen P H.1937. Experiments in connection with Daly’s hypothesis on the formation of submarine canyons. Leidsche Geologische Mededeelingen, 7: 327-351. [96] Kuenen P H,Migliorini C I.1950. Turbidity currents as a cause of graded bedding. The Journal of Geology, 58(2): 91-127. [97] Lamb M P,Hickson T,Marr J G,Sheets B,Paola C,Parker G.2004. Surging versus continuous turbidity currents: flow dynamics and deposits in an experimental intraslope minibasin. Journal of Sedimentary Research, 74(1): 148-155. [98] Lamb M P,Toniolo H,Parker G.2006. Trapping of sustained turbidity currents by intraslope minibasins. Sedimentology, 53(1): 147-160. [99] Lane-Serff G F,Beal L M,Hadfield T D.1995. Gravity current flow over obstacles. Journal of Fluid Mechanics, 292: 39-53. [100] Lawrence G A.1993. The hydraulics of steady two-layer flow over a fixed obstacle. Journal of Fluid Mechanics, 254: 605-633. [101] Leeder M R,Gawthorpe R L.1987. Sedimentary models for extensional tilt-block/half-graben basins. Geological Society,London,Special Publications, 28: 139-152. [102] Long R R.1955. Some aspects of the flow of stratified fluids: Ⅲ. Continuous density gradients. Tellus, 7(3): 341-357. [103] Lowe D R.1982. Sediment gravity flows: II depositional models with special reference to the deposits of high-density turbidity currents. SEPM Journal of Sedimentary Research, 52: 279-297. [104] Madof A S,Christie-Blick N,Anders M H.2009. Stratigraphic controls on a salt-withdrawal intraslope minibasin,north-central Green Canyon,Gulf of Mexico: implications for misinterpreting sea level change. AAPG Bulletin, 93: 535-561. [105] Madof A S,Christie-Blick N,Anders M H,Febo L A.2017. Unreciprocated sedimentation along a mud-dominated continental margin,Gulf of Mexico,U.S.A.: implications for sequence stratigraphy in muddy settings devoid of depositional sequences. Marine and Petroleum Geology, 80: 492-516. [106] Maharaj V T.2012. The effects of confining minibasin topography on turbidity current dynamics and deposit architecture. Doctoral dissertation of The University of Texas at Austin: 1-479. [107] Marjanac T.1990. Reflected sediment gravity flows and their deposits in flysch of Middle Dalmatia,Yugoslavia. Sedimentology, 37(5): 921-929. [108] Maselli V,Micallef A,Normandeau A,Oppo D,Iacopini D,Green A,Ge Z Y.2021. Active faulting controls bedform development on a deep-water fan. Geology, 49(12): 1495-1500. [109] Mayall M,Lonergan L,Bowman A,James S,Mills K,Primmer T,Pope D,Rogers L,Skeene R.2010. The response of turbidite slope channels to growth-induced seabed topography. AAPG Bulletin, 94: 1011-1030. [110] Meiburg E,Kneller B C.2010. Turbidity currents and their deposits. Annual Review of Fluid Mechanics, 42: 135-156. [111] Mianaekere V,Adam J.2020. ‘Halo-kinematic’sequence stratigraphic analysis adjacent to salt diapirs in the deepwater contractional Province,Liguro-Provençal Basin,Western Mediterranean Sea. Marine and Petroleum Geology, 115: 104258. [112] Middleton G V.1993. Sediment deposition from turbidity currents. Annual review of earth and planetary sciences, 21: 89-114. [113] Mignot E,Riviere N.2010. Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow. Physics of Fluids, 22(11): 117105. [114] Miles J W,Huppert H E.1968. Lee waves in a stratified flow. Part 2. Semi-circular obstacle. Journal of Fluid Mechanics, 33(4): 803-814. [115] Mitchell W H,Whittaker A C,Mayall M,Lonergan L,Pizzi M.2021a. Quantifying the relationship between structural deformation and the morphology of submarine channels on the Niger Delta continental slope. Basin Research, 33(1): 186-209. [116] Mitchell W H,Whittaker A C,Mayall M,Lonergan L.2021b. New models for submarine channel deposits on structurally complex slopes: examples from the Niger delta system. Marine and Petroleum Geology, 129: 105040. [117] Mitchell W H,Whittaker A C,Mayall M,Lonergan L,Pizzi M.2022. Quantifying structural controls on submarine channel architecture and kinematics. Geological Society of America Bulletin, 134(3-4): 928-940. [118] Morley C K.1995. Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society,London,Special Publications, 80(1): 1-32. [119] Morley C K.2007. Interaction between critical wedge geometry and sediment supply in a deep-water fold belt. Geology, 35(2): 139-142. [120] Morley C K,Leong L C.2008. Evolution of deep-water synkinematic sedimentation in a piggyback basin,determined from three-dimensional seismic reflection data. Geosphere, 4(6): 939-962. [121] Morley C K.2009. Growth of folds in a deep-water setting. Geosphere, 5(2): 59-89. [122] Morley C K,King R,Hillis R,Tingay M,Backe G.2011. Deepwater fold and thrust belt classification,tectonics,structure and hydrocarbon prospectivity: a review. Earth-Science Reviews, 104: 41-91. [123] Muck M T,Underwood M B.1990. Upslope flow of turbidity currents: a comparison among field observations,theory,and laboratory models. Geology, 18(1): 54-57. [124] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48: 269-299. [125] Mutti E,Ricci L F.1978. Turbidites of the northern Apennines: introduction to facies analysis. International Geology Review, 20(2): 125-166. [126] Mutti E,Normark W R.1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett J K,Zuffa G G(eds). Marine Clastic Sedimentology. Dordrecht: Springer, 1-38. [127] Mutti E,Bernoulli D,Lucchi F R,Tinterri R.2009. Turbidites and turbidity currents from Alpine‘flysch’to the exploration of continental margins. Sedimentology, 56(1): 267-318. [128] Nasr-Azadani M M,Meiburg E.2014a. Turbidity currents interacting with three-dimensional seafloor topography. Journal of Fluid Mechanics, 745: 409-443. [129] Nasr-Azadani M M,Meiburg E.2014b. Influence of seafloor topography on the depositional behavior of bi-disperse turbidity currents: a three-dimensional,depth-resolved numerical investigation. Environmental Fluid Mechanics, 14(2): 319-342. [130] Nicol A,Walsh J,Berryman K,Nodder S.2005. Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27(2): 327-342. [131] Normark W R.1970. Growth patterns of deep-sea fans. AAPG Bulletin, 54(11): 2170-2195. [132] Oluboyo A P,Gawthorpe R L,Bakke K,Hadler-Jacobsen F.2014. Salt tectonic controls on deep-water turbidite depositional systems: Miocene,southwestern Lower Congo Basin,offshore Angola. Basin Research, 26: 597-620. [133] Pantin H M,Leeder M R.1987. Reverse flow in turbidity currents: the role of internal solitons. Sedimentology, 34(6): 1143-1155. [134] Patacci M,Haughton P D W,McCaffrey W D.2015. Flow behavior of ponded turbidity currents. Journal of Sedimentary Research, 85(8): 885-902. [135] Paull C K,Talling P J,Maier K L,Parsons D,Xu J P,Caress D W,Gwiazda R,Lundsten E M,Anderson K,Barry J P,Chaffey M,O’Reilly T,Rosenberger K J,Gales J A,Kieft B,McGann M,Simmons S M,McCann M,Sumner E J,Clare M A,Cartigny M J B.2018. Powerful turbidity currents driven by dense basal layers. Nature Communications, 9(1): 1-9. [136] Pickering K T,Hiscott R N.1991. Contained(reflected)turbidity currents from the Middle Ordovician Cloridorme Formation,Quebec,Canada: an alternative to the antidune hypothesis. Deep-Water Turbidite Systems: 89-110. [137] Pickering K T,Underwood M B,Taira A.1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: flow collapse and reflection. Geology, 20(12): 1099-1102. [138] Piper D J W,Normark W R.1983. Turbidite depositional patterns and flow characteristics,Navy Submarine Fan,California Borderland. Sedimentology, 30(5): 681-694. [139] Pizzi M,Lonergan L,Whittaker A C,Mayall M.2020. Growth of a thrust fault array in space and time: an example from the deep-water Niger delta. Journal of Structural Geology, 137: 104088. [140] Pizzi M,Whittaker A C,Lonergan L,Mayall M,Mitchell W H.2021. New statistical quantification of the impact of active deformation on the distribution of submarine channels. Geology, 49(8): 926-930. [141] Pizzi M,Whittaker A C,Mayall M,Lonergan L.2023. Structural controls on the pathways and sedimentary architecture of submarine channels: new constraints from the Niger Delta. Basin Research, 35(1): 141-171. [142] Plenderleith G E,Dodd T J H,McCarthy D J.2022. The effect of breached relay ramp structures on deep-lacustrine sedimentary systems. Basin Research, 34(3): 1191-1219. [143] Pohl F.2019. Turbidity currents and their deposits in abrupt morphological transition zones. Doctoral dissertation of Utrecht University: 1-93. [144] Pohl F,Eggenhuisen J T,Cartigny M J B,Tilston M C,de Leeuw J,Hermidas N.2020. The influence of a slope break on turbidite deposits: an experimental investigation. Marine Geology, 424: 106160. [145] Pohl F,Eggenhuisen J T,Cartigny M J B,Tilston M.2022. Initation of deposition in supercritical turbidity currents downstream of a slope break. Eartharxiv. https://doi.org/10.31223/X5M35X [146] Pope E L,Cartigny M J B,Clare M A,Talling P J,Lintern D G,Vellinga A,Hage S,Açikalin S,Bailey L,Chapplow N,Chen Y,Eggenhuisen J T,Hendry A,Heerema C J,Heijnen M S,Hubbard S M,Hunt J E,McGhee C,Parsons D R,Simmons S M,Stacey C D,Vendettuoli D.2022. First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20): eabj3220. [147] Porebski S J,Meischner D,Gorlich K.1991. Quaternary mud turbidites from the South Shetland Trench(West Antarctica): recognition and implications for turbidite facies modelling. Sedimentology, 38(4): 691-715. [148] Postma G,Cartigny M J B,Kleverlaan K.2009. Structureless,coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current? Sedimentary Geology, 219(01-04): 1-6. [149] Postma G,Cartigny M J B.2014. Supercritical and subcritical turbidity currents and their deposits: a synthesis. Geology, 42(11): 987-990. [150] Postma G,Kleverlaan K,Cartigny M J B.2014. Recognition of cyclic steps in sandy and gravelly turbidite sequences,and consequences for the Bouma facies model. Sedimentology, 61(7): 2268-2290. [151] Prather B E,Booth J R,Steffens G S,Craig P A.1998. Classification,lithologic calibration,and stratigraphic succession of seismic facies of intraslope basins,deep-water Gulf of Mexico. AAPG Bulletin, 82: 701-728. [152] Ravnås R,Steel R J.1998. Architecture of marine rift-basin successions. AAPG Bulletin, 82: 110-146. [153] Rodriguez C R,Jackson C A L,Rotevatn A,Bell R E,Francis M.2018. Dual tectonic-climatic controls on salt giant deposition in the Santos Basin,offshore Brazil. Geosphere, 14: 215-242. [154] Rodriguez C R,Jackson C A L,Bell R E,Rotevatn A,Francis M.2021. Deep-water Reservoir distribution on a salt-influenced slope,Santos Basin,offshore Brazil. AAPG Bulletin,105(8): 1679-1720. [155] Rothwell R G,Pearce T J,Weaver P P E.1992. Late quaternary evolution of the Madeira abyssal plain,canary basin,NE Atlantic. Basin Research, 4(2): 103-131. [156] Rottman J W,Simpson J E,Hunt J C R,Britter R E.1985. Unsteady gravity current flows over obstacles: some observations and analysis related to the phase II trials. Journal of Hazardous Materials, 11: 325-340. [157] Schlische R W.1995. Geometry and origin of fault-related folds in extensional settings. AAPG Bulletin, 79(11): 1661-1678. [158] Sequeiros O E,Spinewine B,Garcia M H,Beaubouef R T,Sun T,Parker G.2009. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part I. Documentation of the flow. Journal of Sedimentary Research, 79(8): 593-607. [159] Simpson J E.1982. Gravity currents in the laboratory,atmosphere,and ocean. Annual Review of Fluid Mechanics, 14(1): 213-234. [160] Sinclair H D,Tomasso M.2002. Depositional evolution of confined turbidite basins. Journal of Sedimentary Research, 72: 451-456. [161] Slootman A,Cartigny M J B.2020. Cyclic steps: review and aggradation-based classification. Earth-Science Reviews, 201: 102949. [162] Snyder W H,Thompson R S,Eskridge R E,Lawson R E,Castro I P,Lee J T,Hunt J C R,Ogawa Y.1985. The structure of strongly stratified flow over hills: dividing-streamline concept. Journal of Fluid Mechanics, 152: 249-288. [163] Soutter E L,Bell D,Cumberpatch Z A,Ferguson R A,Spychala Y T,Kane I A,Eggenhuisen J T.2021. The influence of confining topography orientation on experimental turbidity currents and geological implications. Frontiers in Earth Science, 8: 540633. [164] Spinewine B,Sequeiros O E,Garcia M H,Beaubouef R T,Sun T,Savoye B,Parker G.2009. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part Ⅱ. Morphodynamic evolution of the wedge and of the associated bedforms. Jour |