[1] (美)布拉特,米德顿,穆雷. 1978. 沉积岩成因. 北京: 科学出版社,379-387. [Blatt H,Middleton G V,Murray R C. 1978. Origin of Sedimentary Rocks. Beijing: Science Press,379-387] [2] 曹秋香,郭福生,刘向铜,杜杨松,严兆彬,张松,孙文洁. 2008. 浙江江山丁家山组层状硅质岩阴极发光特征及成因探讨. 沉积学报, 26(5): 797-803. [Cao Q X,Guo F S,Liu X T,Du Y S,Yan Z B,Zhang S,Sun W J. 2008. Origin of bedded chert from Ding Jiashan Formation in Jiangshan region,Zhejiang Province: evidence from cathodelum inescenc. Acta Sedimentologica Sinica, 26(5): 797-803] [3] 陈洪德,曾允孚. 1989. 广西丹池盆地上泥盆统榴江组硅质岩沉积特征及成因讨论. 矿物岩石, 9(4): 22-29,128. [Chen H D,Zeng Y F. 1989. Depositional characteristic and genesis of Upper Devonian silicalites in Danchi basin,Guangxi. Mineralogy and Petrology, 9(4): 22-29,128] [4] 董存杰,张宝琛,董立军. 2010. 青城子矿田硅质岩成因探讨. 矿产与地质, 24(2): 166-171. [Dong C J,Zhang B C,Dong L J. 2010. Analysis on the genesis of the siliceous rocks in Qingchengzi ore field. Mineral Resources and Geology, 24(2): 166-171] [5] 方雪. 2017. 四川广元上寺剖面上二叠统不同形态硅岩的微观成因研究. 中国石油大学(华东)硕士论文: 1-71. [Fang X. 2017. Microscopic genesis of different forms of upper Permian siliceous rocks in Shangsi Section,Guangyuan,Sichuan Province. Masteral dissertation of China University of Petroleum(East China): 1-71] [6] 冯增昭. 1993. 沉积岩石学(第二版)(下册). 北京: 石油工业出版社,1-368. [Feng Z Z. 1993. Sedimentary Petrology(Second Edition)Volume Ⅱ. Beijing: Petroleum Industry Press,1-368] [7] 冯增昭. 2013. 中国沉积学(第2版). 北京: 石油工业出版社,1-1792. [Feng Z Z. 2013. Chinese Sedimentology(Second edition). Beijing: Petroleum Industry Press,1-1792] [8] 韩宗珠,肖楠,李安龙,高芳,徐翠玲,何雨旸. 2014. 安徽巢湖下二叠统孤峰组硅质岩沉积地球化学特征与沉积环境分析. 中国海洋大学学报, 44(4):78-85. [Han Z Z,Xiao N, Li A L, Gao F, Xu C L, He Y Y. 2014. Geochemistry and sedimentary environments analysis of siliceous rocks from the Gufeng formation of lower Permian in Chaohu region, Anhui province. Periodical of Ocean University of China, 44(4): 78-85] [9] 何俊国,周永章,聂凤军,杨志军,张澄博,付伟. 2007. 西藏南部热水沉积硅质岩岩石学和地球化学特征及地质意义. 矿物岩石地球化学通报, 26(1): 74-81. [He J G,Zhou Y Z,Nie F J,Yang Z J,Zhang C B,Fu W. 2007. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance. Bulletin of Mineralogy,Petrology and Geochemistry, 26(1): 74-81] [10] 加娜提古丽·吾斯曼,周瑶琪,姚旭,许汉华,方雪. 2017. 安徽省巢湖地区二叠纪栖霞组、孤峰组硅质岩地球化学特征对比及大地构造背景分析. 现代地质, 31(4): 734-745. [Jianatiguli W,Zhou Y Q,Yao X,Xu H H,Fang X. 2017. Geochemical characteristics comparison and tectonic background analysis of siliceous rocks from Qixia formation and Gufeng formation of Permian in Chaohu area,Anhui Province. Geoscience, 31(4): 734-745] [11] 姜在兴. 2003. 沉积学. 北京: 石油工业出版社,242-245. [Jiang Z X. 2003. Sedimentology. Beijing: Petroleum Industry Press,242-245] [12] (苏)鲁欣. 1964. 沉积岩石学手册(下册). 北京: 石油工业出版社,209-210. [Pухин. 1964. Handbook of Sedimentary Petrology(Volume Ⅱ). Beijing: Petroleum Industry Press,209-210] [13] 李延河,侯可军,万德芳,张增杰,乐国良. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359-1373. [LI Y H,Hou K J,Wan D F,Zhang Z J,Yue G L. 2010. Formation mechanism of precambrian banded iron formation and atmosphere and ocean during early stage of the earth. Acta Geologica Sinica, 84(9): 1359-1373] [14] 林良彪,陈洪德,朱利东. 2010. 川东茅口组硅质岩地球化学特征及成因. 地质学报, 84(4): 500-507. [Lin LB,Chen H D,Zhu L D. 2010. The origin and geochemical characteristics of Maokou formation silicalites in the eastern Sichuan Basin. Acta Geologica Sinica, 84(4): 500-507] [15] 刘家军,郑明华. 1991. 硅岩的新成因—热水沉积作用. 四川地质学报, 11(4): 251-255. [Liu J J,Zheng M H. 1991. New genesis of silicalite hydrothermal sedimentat-ion. Acta Geologica Sichuan, 11(4): 251-255] [16] 刘家军,郑明华. 1993. 热水沉积硅岩的地球化学. 四川地质学报, 13(2): 110-118. [Liu J J,Zheng M H. 1993. Geochemistry of hydrothermal sedimentary silicalites. Acta Geologica Sichuan, 13(2): 110-118] [17] 刘思聪,宁淑媛,郑德顺. 2021. 南秦岭地区下寒武统水沟口组黑色岩系成因及其沉积环境. 地质学报, 95(2): 549-564. [Liu S C,Ning S Y,Zheng D S. 2021. Petrogenesis and sedimentary environment of black rock series of the lower Cambrian Shuigoukou formation in south Qinling. Acta Geologica Sinica, 95(2): 549-564] [18] 刘云. 1998. 皖南晚震旦世硅质岩的成因研究. 地层学杂志, 22(2): 154-161. [Liu Y. 1998. Study on the genesis of Late Sinian siliceous rocks in southern Anhui. Journal of Stratigraphy, 22(2): 154-161] [19] 卢龙飞,刘伟新,俞凌杰,张文涛,申宝剑,腾格尔. 2020. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响. 石油实验地质, 42(3): 363-370. [Lu L F,Liu W X,Yu L J,Zhang W T,Shen B J,Teng G E. 2020. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale. Petroleum Geology and Experiment, 42(3): 363-370] [20] 陆晨明,刘本培,蒋子堃,张在明,叶群芳. 2017. 京西雾迷山组第4段强迫型海退过程中的层序旋回特征及其构造古地理意义. 地质学报, 91(8): 1860-1877. [Lu C M,Liu B P,Jiang Z K,Zhang Z M,Ye Q F. 2017. Features of the sequence cycle in the forced regression process of the fourth member of Wumishan Formation,Western Beijing and its tectonic paleogeographic significance. Acta Geologica Sinica, 91(8): 1860-1877] [21] 罗文军,徐伟,朱正平,刘曦翔,王强,申艳,朱讯. 2019. 四川盆地高石梯地区震旦系灯影组四段硅质岩成因及地质意义. 天然气勘探与开发, 42(3): 1-9. [Luo W J,Xu W,Zhu Z P,Liu X X,Wang Q,Shen Y,Zhu X. 2019. Origin of siliceous rocks in Sinian Dengying 4 member,Gaoshiti area,Sichuan Basin. Natural Gas Exploration and Development, 42(3): 1-9] [22] 马文辛. 2011. 渝东地区震旦系灯影组硅岩特征及成因研究. 成都理工大学硕士论文: 1-89. [Ma W X. 2011. Study on the characteristics and formation mechanism of upper Sinian Dengying formation chert in east Chongqing. Masteral dissertation of Chengdu University of Technology: 1-89] [23] 马文辛,刘树根,黄文明,陈翠华,张长俊. 2014. 渝东地区震旦系灯影组硅质岩结构特征与成因机理. 地质学报, 88(2): 239-253. [Ma W X,Liu S G,Huang W M,Chen C H,Zhang C J. 2014. Fabric characteristics and formation mechanism of chert in Sinian Dengying formation,eastern Chongqing. Acta Geologica Sinica, 88(2): 239-253] [24] 梅冥相,孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18(2): 127-146. [Mei M X,Meng Q F. 2016. Composition diversity of modern stromatolites: a key and window for further understanding of the fFormation of ancient stromatolites. Journal of Palaeogeography(Chinese Edition), 18(2): 127-146] [25] 门欣. 2016. 川东北—渝东南地区奥陶系五峰组硅岩地球化学特征及成因. 成都理工大学硕士论文: 1-59. [Men X. 2016 Geochemical characteristics and genesis of siliceous rocks of Ordovician Wufeng formation in northeast Sichuan southeast Chongqing area. Masteral dissertation of Chengdu University of Technology: 1-59] [26] 磨鸿燕. 2017. 二氧化硅质玉石的显微组构特征及分类初探. 桂林理工大学硕士论文: 1-70. [Mo H Y. 2017. Preliminary study on microstructure characteristics and classification of silica jade. Masteral dissertation of Guilin University of Technology: 1-70] [27] 庞春雨. 2019. 川西北地区长兴组硅质岩地球化学特征与成因. 成都理工大学硕士论文: 1-49. [Pang C Y. 2019. Geochemical characteristics and genesis of siliceous rocks of Changxing formation in northwest Sichuan. Masteral dissertation of Chengdu University of Technology: 1-49] [28] 邱振,王清晨. 2010. 湘黔桂地区中上二叠统硅质岩的地球化学特征及沉积背景. 岩石学报, 26(12): 3612-3628. [Qiu Z,Wang Q C. 2010. Geochemistry and sedimentary background of the middle-upper Permian cherts in the Xiang-Qian-Gui region. Acta Petrologica Sinica, 26(12): 3612-3628] [29] 邱振,王清晨. 2011. 广西来宾中上二叠统硅质岩海底热液成因的地球化学证据. 中国科学: 地球科学, 41(5): 725-737. [Qiu Z,Wang Q C. 2011. Geochemical evidence for submarine hydrothermal origin of the middle-upper Permian chert in Laibin of Guangxi,China. Science China: Earth Science, 41(5): 725-737] [30] 史冀忠,卢进才,魏建设,牛亚卓,姜亭,韩小锋,许伟. 2018. 银额盆地及邻区二叠系硅质岩岩石学、地球化学特征及沉积环境. 地质通报, 37(1): 120-131. [Shi J Z,Lu J C,Wei J S,Niu Y Z,Jiang T,Han X F,Xu W. 2018. Petrology,geochemistry and sedimentary environment of permian siliceous rocks in Yingen-Ejin Basin and its adjacent areas. Geological Bulletin of China, 37(1): 120-131] [31] 孙剑,朱祥坤,李志红,陈福雄. 2014. 海南石碌铁矿碧玉及其对矿床成因的制约. 岩石学报, 30(5): 1269-1278. [Sun J,Zhu X K,Li Z H,Chen F X. 2014. Jasper and its constraint on the genesis of the shilu Fe ore deposit in Hainan Province. Acta Petrologica Sinica, 30(5): 1269-1278] [32] 魏帅超,陈启飞,付勇,崔滔,梁厚鹏,葛枝华,张鹏,张勇. 2018. 湘黔地区埃迪卡拉纪-寒武纪之交硅质岩的成因探讨: 来自稀土元素和 Ge/Si 比值的证据. 北京大学学报(自然科学版), 54(5): 1010-1020. [Wei S C,Chen Q F,Fu Y,Cui T,Liang H P,Ge Z H,Zhang P,Zhang Y. 2018. Origin of cherts during the Ediacaran-Cambrian transition in Hunan and Guizhou Provinces,China: evidences from Ree and Ge/Si. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(5): 1010-1020] [33] 魏研,郭佩,靳军,蒋宜勤,王剑,雷海燕,文华国. 2021. 火山—碱湖沉积岩中的燧石成因: 以准噶尔盆地下二叠统风城组为例. 矿物岩石, 41(2): 83-98. [Wei Y,Guo P,Jin J,Jiang Y Q,Wang J,Lei H Y,Wen H G. 2021. Silexite genesis in volcanic-alkali lacustrine sedimentary rocks: a case of the lower Permian Fengcheng formation,Juggar Basin. Journal of Mineralogy and Petrology, 41(2): 83-98] [34] 吴庆余,刘志礼,朱浩然. 1986. 前寒武纪藻类对某些层纹状隧石形成作用的生物地球化学模式和模拟实验研究. 地质学报, 60(4): 375-389. [Wu Q Y,Liu Z L,Zhu H R. 1986. Biogeochemical model and simulation on the effect of precambrian algae in the forming process of certain laminated chert. Acta Geologica Sinica, 60(4): 375-389] [35] 吴建鑫. 2019. 四川盆地北缘—西南缘灯影组硅岩特征及成因研究. 成都理工大学硕士论文: 1-77. [Wu J X. 2019. Characteristics and genesis of siliceous rocks of Dengying formation in the northern and southwestern margin of Sichuan Basin. Masteral dissertation of Chengdu University of Technology: 1-77] [36] 杨杰东,郑文武,陶仙聪,王宗哲. 2004. 安徽淮南群四顶山组燧石Sm-Nd年龄测定. 地质论评, 50(4): 413-417. [Yang J D,Zheng W W,Tao X C,Wang Z Z. 2004. The Sm-Nd age of cherts from Sidingshan Formation of the Huainan Group of Anhui Province. Geological Review, 50(4): 413-417] [37] 杨秀清,毛景文,张作衡,李厚民,李立兴,张旭升. 2020. 条带状铁建造: 特征、成因及其对地球环境的制约. 矿床地质, 39(4): 697-727. [Yang X Q,Mao J W,Zhang Z H,Li H M,Li L X,Zhang X S. 2020. Banded iron formations: their characteristics,genesis and implications for ancient earth's environment. Mineral Deposits, 39(4): 697-727] [38] 杨志军,周永章,张澄博,付伟,杨海生. 2003. 硅质岩组构信息研究及其意义. 矿物岩石地球化学通报, 22(3): 255-258. [Yang Z J,Zhou Y Z,Zhang C B,Fu W,Yang H S. 2003. The research of fabric information in the siliceous rock and its significance. Bulletin of Mineralogy,Petrology and Geochemistry, 22(3): 255-258] [39] 杨宗玉,罗平,刘波,周川闽,马洁. 2019. 早寒武世早期热液沉积特征: 以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例. 地球科学, 44(11): 3845-3870. [Yang Z Y,Luo P,Liu B,Zhou C M,Ma J. 2019. Depositional characteristics of early Cambrian hydrothermal fluid: a case study of siliceous rocks from Yurtus Formation in Aksu area of Tarim Basin,northwest China. Earth Science, 44(11): 3845-3870] [40] 姚旭,周瑶琪,李素,李斗. 2013. 硅质岩与二叠纪硅质沉积事件研究现状及进展. 地球科学进展, 28(11): 1189-1200. [Yao X,Zhou Y Q,Li S,Li D. 2013. Research status and advances in chert and Permian chert event. Advances in Earth Science, 28(11): 1189-1200] [41] 姚旭. 2016. 东古特提斯洋大陆边缘二叠纪硅岩成因研究. 中国石油大学(华东)博士论文: 1-180. [Yao X. 2016. Study on the genesis of Permian siliceous rocks on the continental margin of the east Paleo Tethys Ocean. Doctoral dissertation of China University of Petroleum(East China): 1-180] [42] 叶连俊. 1945. 燧石之成因及其沉积环境. 地质论评, 10(Z3): 267-281,388. [Ye L J. 1945. Origin and sedimentary environment of chert. Geological Review, 10(Z3): 267-281,388] [43] 游雅贤,文华国,郑荣才,罗连超. 2019. 陆地热泉硅华研究进展与展望. 地质科技情报, 38(1): 68-81. [You Y X,Wen H G,Zheng R C,Luo L C. 2019. Advances and prospects of the terrestrial geothermal siliceous sinter research. Bulletin of Geological Science and Technology, 38(1): 68-81] [44] 余瑜,林良彪,任天龙,陈娟,高健. 2016. 川东南茅口组硅质岩地球化学特征及沉积背景. 成都理工大学学报(自然科学版), 43(5): 564-573. [Yu Y,Lin L B,Ren T L,Chen J,Gao J. 2016. Geochemical characteristics of silicalites from the middle Permian Maokou Formation and research of its formation environment in southeast Sichuan basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 43(5): 564-573] [45] 翟立国. 2020. 陆相湖盆热液喷流沉积的硅岩研究. 西北大学硕士论文: 1-84. [Zhai L G. 2020. Study on siliceous rocks deposited by hydrothermal exhalation in continental lake basin. Masteral dissertation of Northwest University: 1-84] [46] 张聪,黄虎,侯明才. 2017. 地球化学方法在硅质岩成因与构造背景研究中的进展及问题. 成都理工大学学报(自然科学版), 44(3): 293-304. [Zhang C,Huang H,Hou M C. 2017. Progress and problems in the geochemical study on chert genesis for interpretation of tectonic background. Journal of Chengdu University of Technology(Science & Technology Edition), 44(3): 293-304] [47] 张岩,漆富成,陈文,叶会寿. 2017. 扬子板块北缘早—中志留世硅质岩成因及古沉积环境的地球化学研究. 地质学报, 91(10): 2322-2350. [Zhang Y,Qi F C,Chen W,Ye H S. 2017. Origin and paleodepositional environment of the early-middle Silurian bedded chert on the northern margin of the Yangtze Block: evidence from geochemical study. Acta Geologica Sinica, 91(10): 2322-2350] [48] 赵澄林,许元恺,白光勇,赖先楷. 1977. 太行山中北段高于庄组—雾迷山组的沉积特征及其相分析. 华东石油学院学报, 2(3): 118-138,181-189,198. [Zhao C L,Xu Y K,Bai G Y,Lai X K. 1977. Sedimentary characteristics and facies analysis of Gaoyuzhuang formation-Wumishan formation in the middle and northern Taihang Mountains. Journal of China University of Petroleum(Edition of Natural Science), 2(3): 118-138,181-189,198] [49] 赵澄林,王中文,迟元苓. 1979. 燕山西段震旦亚界地层岩石学特征及其沉积相. 华东石油学院学报, 4(1): 1-32,116-125. [Zhao C L,Wang Z W,Chi Y L. 1979. Stratigraphic petrological characteristics and sedimentary facies of Sinian suberathem in the Western Yanshan. Journal of China University of Petroleum(Edition of Natural Science), 4(1): 1-32,116-125] [50] 赵澄林. 1980. 试论前寒武系层状缝石岩的有机成因及其与油气生成的关系. 华东石油学院学报(自然科学版), 5(3): 1-9. [Zhao C L. 1980. Exploring organic origin of precambrian bedded chert in relation to hydrocarbon generation. Journal of China University of Petroleum(Edition of Natural Science), 5(3): 1-9] [51] 赵振洋,李双建,王根厚. 2020. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨. 地球科学进展, 35(2): 137-153. [Zhao Z Y,Li S J,Wang G H. 2020. Discussion on sedimentary environments,origin and source of middle Permian Gufeng formation bedded cherts in the northern margin of the middle-lower Yangtze area. Advances in Earth Science, 35(2): 137-153] [52] 钟大康,姜振昌,郭强,孙海涛. 2015. 热水沉积作用的研究历史、现状及展望. 古地理学报, 17(3): 285-296. [Zhong D K,Jiang Z C,Guo Q,Sun H T. 2015. Research history,current situation and prospect of hydrothermal sedimentation. Journal of Palaeogeography(Chinese Edition), 17(3): 285-296] [53] 周新平,何幼斌,罗进雄,徐怀民. 2012. 川东地区二叠系结核状、条带状及团块状硅岩成因. 古地理学报, 14(2): 143-154. [Zhou X P,He Y B,Luo J X,Xu H M. 2012. Origin of the permian nodular,striped and lump siliceous rock in eastern Sichuan Province. Journal of Palaeogeography(Chinese Edition), 14(2): 143-154] [54] Adachi M,Yamamoto K,Sugisaki R. 1986. Hydrothermal chert and associated siliceous rocks from the northern pacific: their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1-2): 125-148. [55] Alexandra A. 2020. Diagenetic formation of bedded chert: implications from a rock magnetic study of siliceous precursor sediments. Earth and Planetary Science Letters, 533: 1-11. [56] Beauchamp B,Boud A. 2002. Growth and demise of permian biogenic chert along northwest pangea: evidence for end-Permian collapse of thermohaline circulation. Palaeogeography,Palaeoclimatology,Palaeoecology, 184(3-4): 37-63. [57] Behl R J. 2011. Chert spheroids of the monterey formation,california(USA): early-diagenetic structures of bedded siliceous deposits. Sedimentology, 58(2): 325-351. [58] Bolhar R, Van Kranendonk M J, Kamber B S. 2005. A trace element study of siderite-jasper banded iron formation in the 3.45 Ga Warrawoona Group, Pilbara Craton: formation from hydrothermal fluids and shallow seawater. Precambrian Research, 137: 93-114. [59] Bustillo M A,Armenteros I,Huerta P. 2017. Dolomitization,gypsum calcitization and silicification in carbonate-evaporite shallow lacustrine deposits. Sedimentology, 64(4): 1147-1172. [60] Campbell K A,Guido D M,Gautret P,Foucher F,Ramboz C,Westall F. 2015. Geyserite in hot-spring siliceous sinter: window on earth's hottest terrestrial(paleo)environment and its extreme life. Earth-Science Reviews, 148: 44-64. [61] Clayton C J. 1986. The Chemical environment of flint formation in Upper Cretaceous chalks. In: Sieveking G,Hart M B(eds). The Scientific Study of Flint and Chert. Cambridge: Cambridge University Press,43-54. [62] Conley D J,Frings P J,Fontorbe G,Clymans W,Stadmark J,Hendry K R,Marron A O,De L R C L. 2017. Biosilicification drives a decline of dissolved Si in the oceans through geologic time. Frontiers in Marine Science, 4: 1-19. [63] Cressman E R. 1962. Data of geochemistry,non-detrital siliceous sediments. U.S. Geological Survey Professional Paper 440-T: 1-23. [64] Decelles P G,Gutschick R C. 1983. Mississippian wood-grained chert and its significance in the western interior United States. Journal of Sedimentary Petrology, 53(4): 1175-1191. [65] Ding T P,Jiang S Y,Li Y H,Gao J F,Hu B. 2017. Geochemistry of Silicon Isotopes. Berlin: De Gruyter Ltd,1-290. [66] Dong Y X,Xu S L, Wen L. 2020. Tectonic control of Guadalupian-Lopingian cherts in northwestern Sichuan Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 557: 1-17. [67] Drake B,Campbell K A,Rowland J,Guido D M. 2014. Evolution of a dynamic paleohydrothermal system at mangatete,taupo volcanic zone,New Zealand. Journal of Volcanology & Geothermal Research, 282: 19-35. [68] Ernst W G,Calvert S E. 1969. An experimental study of tlie recrystallization of porcelanite and its bearing on the origin of some bedded cherts. American Journal of Science, 267: 114-133. [69] Flörke O W. 1955. Zur frage des “Hoch”cristobalit in opalen,bentoniten und gläsern. Neues Jahrbuch fur Mineralogie Monatshefte: 217-224. [70] Flörke O W,Graetsch H,Martin B. 1991. Nomenclature of micro-and non-crystalline silica minerals,based on structure and microstructure. Neues Jahrbuch für Mineralogie-Abhandlungen, 163(1): 19-42 [71] Folk R L,Weaver C E. 1952. A study of the texture and composition of chert. American Journal of Science, 250(7): 498-510. [72] Gao P,He Z l,Lash G G,Li S J,Xiao X M,Han Y Q,Zhang R Q. 2020. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern paleo-tethys margin(South China). Palaeogeography,Palaeoclimatology,Palaeoecology, 551: 1-13. [73] Gül M. 2015. Occurrences of chert in Jurassic-Cretaceous calciturbidites(SW Turkey). Open Geosciences, 7(1): 446-464. [74] Hein J R,Parrish J T. 1987. Distribution of siliceous deposits in space and time. In: Hein J R(ed). Siliceous Sedimentary Rock-hosted Ores and Petroleum. U.S. Department of Energy Office of Scientific and Technical Information: 10-57. [75] Ikeda M,Tada R. 2014. A 70 million year astronomical time scale for the deep-sea bedded chert sequence(Inuyama,Japan): implications for Triassic-Jurassic geochronology. Earth and Planetary Science Letters, 399: 30-43. [76] Iler R K. 1979. Chemistry of Silica. New York: Wiley-Interscience,1-866. [77] Haldar S K,TiŠljar J. 2014. Introduction to Mineralogy and Petrology. Amsterdam:Elsevier Science Company Limited, 1-338. [78] Jones J B,Sanders J V,Segnit E R. 1964. Structure of opal. Nature, 204(4962): 990-991. [79] Jones J B,Segnit E R. 1971. The nature of opal I: nomenclature and constituent phases. Journal of the Geological Society of Australia, 18(1): 57-68. [80] Jones B,Renaut R W. 1997. Formation of silica oncoids around geysers and hot springs at EI Tatio,northern Chile. Sedimentology, 44(2): 287-304. [81] Jones B,Renaut R W,Konhauser K O. 2005. Genesis of large siliceous stromatolites at frying pan lake,Waimangu geothermal field,north island,New Zealand. Sedimentology, 52(6): 1229-1252. [82] Jurkowska A,Wierczewska-Gadysz E. 2020. Evolution of late Cretaceous Si cycling reflected in the formation of siliceous nodules(flints and cherts). Global and Planetary Change, 195(2): 1-26. [83] Kametaka M,Takebe M,Nagai H,Zhu S,Takayanagi Y. 2005. Sedimentary environments of the middle Permian phosphorite-chert complex from the northeastern Yangtze platform,China;the Gufeng Formation: a continental shelf radiolarian chert. Sedimentary Geology, 174: 197-222. [84] Knauth L P. 1979. A model for the origin of chert in limestone. Geology, 7(6): 274-277. [85] Krainer K,Spötl C. 1998. A biogenic silica layers within a fluvio-lacustrine succession,Bolzano Volcanic Complex,northern Italy: a Permian analogue for Magadi-type cherts?Sedimentology, 45(3): 489-505. [86] Laschet C. 1984. On the origin of cherts. Facies, 10(1): 257-289. [87] Lei Z H,Dashtgard S E,Wang J,Li M,Feng Q L,Yu Q,Zhao A K,Du L T. 2019. Origin of chert in lower Silurian longmaxi formation: implications for tectonic evolution of Yangtze block,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 529: 53-66. [88] Levin I,Ott E. 1933. X-ray study of opals,silica glass and silica gel. Zeitschrift für Kristallographie-Crystalline Materials, 85(1-6): 305-318. [89] Maliva R G,Siever R. 1989. Nodular chert formation in carbonate rocks. The Journal of Geology, 97(4): 421-433. [90] Maliva R G,Knoll A H,Siever R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios, 4(6): 519-532. [91] Marin-Carbonne J,Robert F,Chaussidon M. 2014. The silicon and oxygen isotope compositions of precambrian cherts: a record of oceanic paleo-temperatures?Precambrian Research, 247: 223-234. [92] McGowran B. 1989. Silica burb in the Eocene ocean. Geology, 17: 857-860. [93] Mizutani S. 1970. Silica minerals in the early stage of diagenesis. Sedimentology, 15(3-4): 419-436. [94] Mizutani S. 1977. Progressive ordering of cristobalite in the early stages of diagenesis. Contributions to Mineralogy and Petrology, 61: 129-140. [95] Moore T C. 2008. Chert in the pacific: biogenic silica and hydrothermal circulation. Palaeogeography,Palaeoclimatology,Palaeoecology, 261: 87-99. [96] Murchey B L,Jones D L. 1992. A mid-Permian chert event: widespread deposition of biogenetic siliceous sediments in coastal,island arc and oceanic Basins. Palaeogeography,Palaeoclimatology,Palaeoecology, 96: 161-174. [97] Murray R W,Marilyn R,Jones D L,Gerlach D C,Russ I G. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 18(3): 268-271. [98] Murray R W,Jones D L,Marilyn R. 1992. Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet. Geology, 20: 271-274. [99] Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90: 213-232. [100] Muttoni G,Kent D V. 2007. Widespread formation of cherts during the early eocene climate optimum. Palaeogeography,Palaeoclimatology,Palaeoecology, 253: 348-362. [101] Nie H,Jin Z,Sun C,He Z,Liu G,Liu Q. 2019. Organic matter types of the wufeng and longmaxi formations in the Sichuan Basin,south China: implications for the formation of organic matter pores. Energy Fuel, 33(9): 8076-8100. [102] Okamoto G,Okura T,Goto K. 1957. Properties of silica in water. Geochimica et Cosmochimica Acta, 12: 123-132. [103] Racki G. 2000. Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth-Science Reviews, 52: 83-120. [104] Reynolds J H,Verhoogen J. 1953. Natural variations in the isotopic constitution of silicon. Geochimica et Cosmochim Acta, 3: 224-234. [105] Sanchez-Yanez C,Reich M,Leisen M. 2017. Geochemistry of metals and metalloids in siliceous sinter deposits: implications for elemental partitioning into silica phases. Applied Geochemistry, 80: 112-133. [106] Shen B,Ma H R,Ye H Q,Lang X G,Pei H X,Zhou C M,Zhang S H,Yang R Y. 2018. Hydrothermal origin of syndepositional chert bands and nodules in the Mesoproterozoic Wumishan formation: implications for the evolution of Mesoproterozoic cratonic Basin,north China. Precambrian Research, 310: 213-228. [107] Siever R. 1962. Silica solubility,0°~200° C,and the diagenesis of siliceous sediments. The Journal of Geology, 70(2): 127-150. [108] Stein C L,Kirkpatrick R J. 1976. Experimental porcelanite recrystallization kinetics: a nucleation and growth model. Journal of Sedimentary Petrology, 46(2): 430-435. [109] Tarr W A. 1917. Origin of the chert in the burlington limestone. American Journal of Science, 264(44): 409-452. [110] Van den Boorn S. H. J. M,Manfred J V B,Nijman W,Vroon P Z. 2007. Dual role of seawater and hydrothermal fluids in early Archean chert formation: evidence from silicon isotopes. Geology, 35(10): 939-942. [111] Van den Boorn S. H. J. M,Manfred J V B,Vroon P Z,de Vries S T,Nijman W. 2010. Silicon isotope and trace element constraints on the origin of~3.5 Ga cherts: implications for early archaean marine environments. Geochimica et Cosmochimica Acta, 74(3): 1077-1103. [112] Varkouhi S,Cartwright J,Tosca N. 2020. Anomalous compaction due to silica diagenesis-textural and mineralogical evidence from hemipelagic deep-sea sediments of the Japan Sea. Marine Geology, 426: 1-26. [113] Volosov A G,Khodakovskii I L,Ryzhenko B N. 1972. Equilibria in the system SiO2-H2O at enchanced temperatures(along the lower three-phase curve). Geokhimiya, 5(5): 575-591. [114] Wang J G,Chen D Z,Wang D. 2012. Petrology and geochemistry of chert on the marginal zone of Yangtze platform,western Hunan,south China,during the Ediacaran-Cambrian transition. Sedimentology, 59(3): 809-829. [115] Wang Y F,Xu H F,Merino E. 2009. Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nature Geoscience, 2(11): 781-784. [116] Williams L A,Parks G A. 1985. Silica diagenesis Ⅰ: solubility controls. Journal of Sedimentary Research, 55(3): 301-311. [117] Williams L A,Crerar D A. 1985. Silica diagenesis Ⅱ: general mechanisms. SEPM Journal of Sedimentary research, 55(3): 312-321. [118] Willey J O. 1974. The effect of pressure on the solubility of silica in seawater at 0 ℃. Marine Chemistry, 2(4): 239-250. [119] Xu H,Zhou W,Hu, Q H,Yi T,Ke J,Zhao A K,Lei, Z H,Yu Y. 2021. Quartz types,silica sources and their implications for porosity evolution and rock mechanics in the paleozoic Longmaxi formation shale,Sichuan Basin. Marine and Petroleum Geology, 128:1-16. [120] Yao X,Li S,Zhou Y Q. 2021. Hydrothermal origin of early permian chert nodules in the central north China craton linked to northern margin cratonic activation. Acta Geologica Sinica-English Edition, 95(2): 541-557. [121] Yariv S,Cross H. 1979. Colloid Geochemistry of Silica: Geochemistry of Colloid Systems. Berlin: Springer Ltd,247-285. [122] Yu Y,Lin L B,Deng X L,Wang Y N,Li Y H,Guo Y. 2019. Geochemical features of the middle-upper Permian cherts and implications for origin,depositional environment in the Sichuan Basin,SW China. Geological Journal, 55(2): 1493-1506. |