[1] 陈多福,陈光谦,陈先沛. 2002. 贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨. 地球化学, 31(1): 49-54. [Chen D F,Chen G Q,Chen X P.2002. Lead isotope geochemistry of Wengfu phosphorite deposits of Doushantuo Age of Neoproterozoic and its application. Geochimica, 31(1): 49-54] [2] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 17-25. [Chen G Y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H.2015. Spatial and temporal variation and mineralization model of the Sinian Phosphorus-bearing sequences in central Guizhou Province. Bulletin of Geological Science and Technology, 34(6): 17-25] [3] 陈建强,周洪瑞,王训练. 2004. 沉积学与古地理学教程. 北京: 地质出版社, 1-278. [Chen J Q,Zhou H R,Wang X L.2004. Sedimentation and Ancient Geography Tutorial. Beijing: Geological Publishing House, 1-278] [4] 陈其英,陈孟莪,李菊英. 2000. 沉积磷灰石形成中的生物有机质因素. 地质科学, 35(3): 316-324. [Chen Q Y,Chen M E,Li J Y.2000. Microbial-organic effects on formation of the sedimentary apatite. Chinese Journal of Geology(Scientia Geologica Sinica), 35(3): 316-324] [5] 程建,郑伦举. 2020. 川南地区金页1井早寒武世烃源岩沉积地球化学特征. 石油与天然气地质, 41(4): 800-810. [Chen J,Zheng L J.2020. Sedimentary geochemical characteristics of the Early Cambrian source rocks in Well Jinye 1 in southern Sichuan Basin. Oil & Gas Geology, 41(4): 800-810] [6] 邓宏文,钱凯. 1993. 沉积地球化学与环境分析. 兰州: 甘肃科学技术出版社, 1-89. [Deng H W,Qian K.1993. Sedimentary Geochemistry and Environmental Analysis. Lanzhou: Gansu Science and Technology Press, 1-89] [7] 邓克勇,吴波,罗明学,罗春,龙建喜. 2015. 贵州开阳双山坪陡山沱组磷块岩地球化学特征及成因意义. 地质与勘探, 51(1): 123-132. [Deng K Y,Wu B,Luo M X,Luo C,Long J X.2015. Phosphate rock geochemistry of the Doushantuo Formation in Shuangshanping,Kaiyang of Guizhou Province and its genetic significance. Geology and Exploration, 51(1): 123-132] [8] 丁亚龙,谢宏. 2015. 贵州瓮安岚关灯影组磷块岩元素地球化学特征. 中国矿业, 24(8): 84-88. [Ding Y L,Xie H.2015. Research into the geochemical characteristics of phosphorites of Dengying Formation in the area of Weng'an county,Guizhou. China Mining Magazine, 24(8): 84-88] [9] 东野脉兴. 1996. 上升洋流与陆缘坻. 化工矿产地质, 18(3): 156-162. [Dongye M X.1996. Upwelling oceanic curuents & epicontnental CHI. Geology of Chemical Minerals, 18(3): 156-162] [10] 段太忠,曾允孚,高振中. 1988. 根据沉积历史分析华南古大陆边缘的构造演化. 石油与天然气地质, 9(4): 410-420. [Duan T Z,Zeng Y F,Gao Z Z.1988. Analysis of tectonic evolution of Paleo-continental margin in South China based on sedimentary history. Petroleum and Gas Geology, 9(4): 410-420] [11] 葛金国. 2017. 贵州息烽磷矿床地质特征及成因机制研究. 华北国土资源,(6): 51-54. [Ge J G.2017. Geological characteristics and genetic mechanism of Xifeng phosphate deposit in Guizhou. Huabei Land and Resources,(6): 51-54] [12] 郭庆军,杨卫东,刘丛强,Harald Strauss,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 202-208. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L.2003. Sedimentary geochemistry research on the radiation of Weng'an Biota and the formation of the phosphorite ore deposit,Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 22(3): 202-208] [13] 姜在兴. 2003. 沉积学. 北京: 石油工业出版社,1-540. [Jiang Z X.2003. Sedimology. Beijing: Petroleum Industry Press, 1-540] [14] 李磊,张亚冠,王泽鹏,叶连,谭代卫,王大福,郭磊. 2016. 贵州开阳地区磷块岩类型划分及沉积环境分析. 西部探矿工程, 28(7): 170-174. [Li L,Zhang Y G,Wang Z P,Ye L,Tan D W,Wang D F,Guo L.2016. Analysis of types of phosphorus total rock in Kaiyang area in Guizhou Province. West-China Exploration Engineering, 28(7): 170-174] [15] 廖善友. 1999. 贵州息烽磷矿的聚磷环境与富集机制. 贵州师范大学学报(自然科学版),(3): 59-63. [Liao S Y.1999. The environment and the mechanism of polyphosphorus assemblyin Xifeng County. Journal of Guizhou Normal University(Natural Science),(3): 59-63] [16] 刘建中,王泽鹏,杜远生,张亚冠,吴文明,陈国勇,付芝康,万大学,王大福,谭代卫. 2020. 贵州开阳以东震旦系陡山沱组磷矿富磷机制与“三位一体”预测找矿重大突破. 古地理学报, 22(5): 913-928. [Liu J Z,Wang Z P,Du Y S,Zhang Y G,Wu W M,Chen G Y,Fu Z K,Wan D X,Wang D F,Tan D W.2020. Enrichment mechanism of phosphorite deposits and significant breakthrough in “Triunity Model”for ore prospecting in the Sinian Doushantuo Formation of eastern Kaiyang. Journal of Palaeogeography(Chinese Edition), 22(5): 913-928] [17] 娄方炬. 2020. 贵州织金磷矿稀土富集机制研究. 贵州大学硕士学位论文: 1-62. [Lou F J.2020. Study on rare earth enrichment mechanism of Zhijin phosphate rock in Guizhou Province,Guizhou. Masteral dissertation of Guizhou University: 1-62] [18] 梅冥相. 2016. 地球历史中的巨型氧化作用事件: 了解古地理背景演变的重要线索. 古地理学报18(3): 315-334. [Mei M X.2016. Great Oxidation Event in history of the Earth: an important clue for the further understanding of evolution of palaeogeographical background. Journal of Palaeogeography(Chinese Edition), 18(3): 315-334] [19] 全贵龙,林丽,密文天. 2020. 贵州瓮安白岩陡山沱组磷块岩特征及矿床成因. 成都理工大学学报(自然科学版), 7(4): 423-432. [Quan G L,Lin L,Mi W T.2020. Characteristics of Doushantuo Formation phosphorite and genesis of ore deposit in Weng'an,Guizhou Province,China. Journal of Chengdu University of Technology(Science & Technology Edition), 7(4): 423-432] [20] 施春华. 2005. 磷矿的形成与Rodinia超大陆裂解、生物爆发的关系. 贵阳: 中国科学院研究生院(地球化学研究所)博士学位论文: 1-118. [Shi C H.2005. Formation of phosphorite deposit,breakup of Rodinia supercontinent and biology explosion: a case study of Weng'an,Kaiyang and Zhijin phosphorite deposits of Guizhou Province. Doctoral dissertation of Institute of Geochemistry, Chinese Academy of Sciences(Guiyang): 1-118] [21] 涂光炽. 1998. 低温地球化学. 北京: 科学出版社, 1-266. [Tu G Z.1998. Cryogenic Geochemistry. Beijing: Science Press, 1-266] [22] 王剑. 1990. 缓坡及其构造背景: 以中国南方早寒武世龙王庙期扬子碳酸盐缓坡为例. 岩相古地理,(5): 13-22. [Wang J.1990. Cambrian ramps and their tectonic controls,with an example from the Longwangmiaoian(Early Cambrian)Yangzi carbonate ramp in South China. Lithofacies Palaeogeography,(5): 13-22] [23] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W.2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749] [24] 王泽鹏,张亚冠,杜远生,陈国勇,刘建中,徐园园,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳磷矿沉积区震旦纪陡山沱期定量岩相古地理重建. 古地理学报, 18(3): 399-410. [Wang Z P,Zhang Y G,Du Y S,Chen G Y,Liu J Z,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M.2016. Reconstruction of quantitative lithofacies palaeogeography of the Sinian Doushantuo Age of phosphorite depositional zone in Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(3): 399-410] [25] 王中刚,于学元. 1989. 稀土元素地球化学. 北京: 科学出版社, 1-535. [Wang Z G,Yu X Y.1989. Rare Earth Element Geochemistry. Beijing: Science Press, 1-535] [26] 王子玉,姚琬圭,陈晓明. 1989. 沉积磷酸盐法的古盐度意义. 沉积学报, 7(4): 113-119. [Wang Z Y,Yao W G,Chen X M.1989. Paleosalinity of sedimentary phosphate method(SPM)and its significance. Acta Sedimentologica Sinica, 7(4): 113-119] [27] 吴祥和,韩至钧,蔡继峰,肖永连. 1999. 贵州磷块岩. 北京: 地质出版社, 1-124. [Wu X H,Han Z J,Cai J F,Xiao Y L.1999. Guizhou Phosphorite. Beijing: Geological Publishing House, 1-124] [28] 吴文明,徐世林,杨瑞东,王泽鹏,刘建中,刘松,王大福,吴小红,万大学,潘启权,张丞. 2020. 黔中开阳地区南华系澄江组古环境演化及意义. 地质论评, 66(2): 276-288. [Wu W M,Xu S L,Yang R D,Wang Z P,Liu J Z,Liu S,Wang D F,Wu X H,Wan D X,Pan Q G,Zhang C.2020. Paleo-environmental evolution of the Chengjiang Formation,Nanhuan System,in Kaiyang area,Central Guizhou,and its significance. Geological Review, 66(2): 276-288] [29] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F.2011. Geochemical indicators of the sedimentary environment: a summary. Earth and Environment. 39(3): 405-414] [30] 薛珂,张润宇. 2019. 中国磷矿资源分布及其成矿特征研究进展. 矿物学报, 39(1): 7-14. [Xue K,Zhang R Y.2019. Advances of researches on the distribution and metallogenic characteristics of phosphorous deposits in China. Acta Mineralogica Sinica, 39(1): 7-14] [31] 杨海英,肖加飞,李艳桃,和景阳. 2017. 黔中地区陡山沱期开阳、瓮安磷矿区成矿作用研究现状探讨. 地质找矿论丛, 32(4): 551-561. [Yang H Y,Xiao J F,Li Y T,He J Y.2017. Discuss on the present situation of mineralization research of Wong'an,Kaiyang Sinian Doushantuo Period phosphorite in Central Guizhou. Contributions to Geology and Mineral Resources Research, 32(4): 551-561] [32] 杨海英,肖加飞,胡瑞忠,夏勇,何洪茜. 2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制. 古地理学报, 22(5): 929-946. [Yang H Y,Xiao J F,Hu R Z,Xia Y,He H Q.2020. Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian,Central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 22(5): 929-946] [33] 杨卫东,肖金凯,陈丰. 1997. 滇黔磷块岩沉积学、地球化学与可持续开发战略. 北京: 地质出版社, 1-106. [Yang W D,Xiao J K,Chen F.1997. Sedimentology,Geochemistry and Sustainable Development Strategy of Phosphate Rocks in Yunnan and Guizhou. Beijing: Geological Publishing House, 1-106] [34] 叶连俊,陈其英,赵东旭. 1989. 中国磷块岩. 北京: 科学出版社, 1-339. [Ye L J,Chen Q Y,Zhao D X.1989. Chinese Phosphorite. Beijing: Geological Publishing House, 1-339] [35] 张伟,杨瑞东,毛铁,任海利,高军波,陈吉艳. 2015. 瓮安埃迪卡拉系灯影组叠层石磷块岩形成环境及成矿机制. 高校地质学报, 21(2): 186-195. [Zhang W,Yang R D,Mao T,Ren H L,Gao J B,Chen J Y.2015. Sedimentary environment and mineralization mechanism of the stromatolitic phosphorite in the Ediacaran Dengying Formation,Weng'an County of Guizhou Province,China. Geological Journal of China Universities, 21(2): 186-195] [36] 张亚冠,杜远生,陈国勇,刘建中,陈庆刚,赵征,王泽鹏,邓超. 2019. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制. 古地理学报, 21(2): 351-368. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Chen Q G,Zhao Z,Wang Z P,Deng C.2019. Three stages dynamic ineralization model of the phosphate-rich deposits: mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 21(2): 351-368] [37] 张亚冠. 2019. 黔中地区震旦纪陡山沱组磷矿沉积地质与大规模成矿作用. 中国地质大学(武汉)博士论文: 1-162. [Zhang Y G.2019. Sedimentary geology of the phosphorite deposits and phosphogenic event from Ediacaran Doushantuo Formation in Central Guizhou Provinve. Doctoral dissertation of China University of Geosciences(Wuhan): 1-162] [38] 邹亮,韦刚健. 2009. 早中新世以来南海北部陆坡古生产力的碳酸盐和生物成因Ba元素记录. 地球化学, 38(1): 89-95. [Zou L,Wei G J.2009. Carbonate and biogenic Ba records of paleoproductivity since early Miocene in northern South China Sea. Geochimica, 38(1): 89-95] [39] Baturin G N.1989. The origin of marine phosphorites. International Geology Review, 31(4): 327-342. [40] Bau M,Möller P.1992. Rare earth element fractionation in metamorpho-genic hydrothermal calcite,magnesite and siderite.Mineralogy and Petrology, 45(3): 231-246. [41] Boström K,Kraemer T,Gartner S.1973. Proverance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni and Co in pacific pelagic sediments. Chemical Gcology, 11(2): 123-148. [42] Campbell I H,Squire R J.2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(15): 4187-4206. [43] Canfield D E,Poulton S W,Knoll A H,Narbonne G M,Ross G,Goldberg T,Strauss H.2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321(5891): 949-952. [44] Chen Z Y,Chen Z G,Zhang W G.1997. Quaternary stratigraphy and trace-element indices of the Yangtze delta,Eastern China,with specialreference to marine transgressions. Quaternary Research, 47(2): 181-191. [45] Compton J,Mallinson D,Glenn C,Filipelli G,Follmi K,Shields G,Zanin Y.2000. Variations in the global phosphorus cycle. Society for Sedimentary Geology, 66: 21-33. [46] Delaney M L.1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4): 563-672. [47] Filippelli G M.2011. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere, 84(6): 759-766. [48] Gao Y P,Zhang X L,Zhang G J,Chen K F,Shen Y N.2018. Ediacaran negative C-isotopic excursions associated with phosphogenic events: evidence from South China. Precambrian Research, 307: 218-228. [49] Henderson P.1984. Rare Earth Element Geochemistry. Amsterdam: Elsevier Science Publishers, 1-510. [50] Jennifer L,Morford,Steven E.1999. The geochemistry of redox sensitive trace metals in sediments. Geochim.Cosmochim.Acta, 63(11-12): 1735-1750. [51] Kurt B.1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits. Hydrothermal Processes at Seafloor Spreading Centers. Springer US. Https://doi.org/10.1007/978-1-4899-0402-7_20. [52] Long J,Zhang S X,Luo K L,2020. Distribution of selenium and arsenic in differentiated multicellular eukaryotic fossils and their significance. Geoscience Frontiers, 11(3): 821-833. [53] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315. [54] Marchig V,Gundlach H,Mller P,Schley F.1982. Some geochemical in-dicators for discrimination between diagenetic and hydrothermal met-alliferous sediments. Marine Geology, 50(3): 241-256. [55] Masuda A,Nakamura N,Tanaka T.1973. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. [56] Mcarthur J M,Walsh J N.1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191-220. [57] Nelson B.1967. Sedimentary phosphate method for estimating paleosalinites. Science, 158(3803): 917-920. [58] Papineau D.2010. Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology, 10(2): 165-181. [59] Pufahl P K,Hiatt E E.2012. Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1): 1-20. [60] Pufahl P K,Groat L A.2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Economic Geology, 112(3): 483-516. [61] Rona P A.1987. Criteria for recognition of hydrothermal mineral deposits in oceancrust. Economic Geology, 73(2): 135-160. [62] Rudnick R, Gao S.2003. Composition of the continental crust. In: Rudnick R(ed). Treatise on Geochemistry(3). Amsterdam: Elsevier, 1-64. [63] She Z B,Strother P,Papineau D.2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: microbial diversity and C isotopes. Precambrian Research, 251(3): 62-79. [64] Shields-Zhou G,Och L.2011. The case for a Neoproterozoic Oxygenation Event: geochemical evidence and biological consequences. GSA Today, 21(3): 4-11. [65] Taylor S R,McLennan S M.1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication,1-301. [66] Wang J,Li X H,Duan T Z,Liu D Y,Song B,Li Z X,Gao Y H.2003. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin, 48(16): 1663-1669. [67] Wright J,Schrader H,Holser W T.1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica Et Cosmochimica Acta, 51(3): 631-644. [68] Zhao J H,Zhou M F,Yan D P,Zheng J P.2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, 39(4): 299-302. |