[1] 白瑾. 1986. 五台山早前寒武纪地质. 天津: 天津科学技术出版社,376-379. [Bai J.1986. The Early Precambrian Geology of Wutaishan. Tianjin: Tianjin Science and Technology Press,376-379] [2] 华仁民,李晓峰,张开平,季峻峰,张文兰. 2003. 金山金矿热液蚀变粘土矿物特征及水-岩反应环境研究. 矿物学报, 23(1): 23-30. [Hua R M,Li X F,Zhang K P,Ji J F,Zhang W L.2003. Characteristics of clay minerals derived from hydrothermal alteration in Jinshan gold deposit: implication for the environment of water-rock interaction. Acta Mineralogica Sinica, 23(1): 23-30] [3] 黄丽萍. 2004. 论龙永煤田童子岩组菱铁矿及其岩相意义. 中国煤田地质, 16: 35-37. [Huang L P.2004. On siderite in Tongziyan formation,Longyong coalfield and its lithofacies meaning. Coal Geology of China, 16: 35-37] [4] 李江海,牛向龙,钱祥麟,田永清. 2006. 五台山区太古宙/元古宙界线划分及其地球演化意义. 大地构造与成矿学, 30(4): 409-418. [Li J H,Niu X L,Qian X L,Tian Y Q.2006. Division of Archean/Proterozoic boundary and its implication for geological evolution in Wutai Mountain area,North China. Geotectonica et Metallogenia, 30(4): 409-418] [5] 刘敦一,Page R W,Compston W,伍家善. 1984. 太行山—五台山区前寒武纪变质岩系同位素地质年代学研究. 中国地质科学院院报, 8: 57-84. [Liu D Y,Page R W,Compston W,Wu J S.1984. U-Pb zircon geochronology of Precambrian metamorphic rocks in the Taihangshan-Wutaishan area,North China, Bulletin of the Chinese Academy of Geological Sciences, 8: 57-84] [6] 沈保丰,毛德宝. 2003. 论五台群的地质时代. 地质调查与研究, 26(2): 72-79. [Shen B F,Mao D B.2003. On Wutai Group geochronology. Geological Survey and Research, 26(2): 72-79] [7] 万渝生,苗培森,刘敦一,杨崇辉,王伟,王惠初,王泽九,董春艳,杜利林,周红英. 2010. 华北克拉通高凡群、滹沱群和东焦群的形成时代和物质来源: 碎屑锆石SHRIMP U-Pb 同位素年代学制约. 科学通报, 55(7): 572-578. [Wan Y S,Miao P S,Liu D Y,Yang C H,Wang W,Wang H C,Wang Z J,Dong C Y,Du L L,Zhou H Y.2010. Formation ages and source regions of the Paleoproterozoic Gaofan,Hutuo and Dongjiao groups in the Wutai and Dongjiao areas of the North China Craton from SHRIMP U-Pb dating of detrital zircons: resolution of debates over their stratigraphic relationships. Chinese Science Bulletin, 55(7): 572-578] [8] 王凯怡,李继亮,郝杰,柴育成,周少平. 1997. 山西省五台山晚太古代镁铁质—超镁铁质岩: 一种可能的古蛇绿混杂岩. 岩石学报, 13(2): 139-151. [Wang K Y,Li J L,Hao J,Chai Y C,Zhou S P.1997. Late Archean mafic-ultramafic rocks from the Wutaishan,Shanxi Province: a possible ophiolite mélange. Acta Petrologica Sinica, 13(2): 139-151] [9] 王汝铮,颜耀阳,李惠民,林源贤. 1997. 山西五台山地区早前寒武纪年代构造格架. 前寒武纪研究进展, 20(2): 44-50. [Wang R Z,Yan Y Y,Li H M,Lin Y X.1997. The Early Precambrian chronotectonic framework in the Wutaishan area. Progress in Precambrian Research, 20(2): 44-50] [10] 赵飞凡,陈衍景. 2020. 五台群是新太古代还是古元古代? 同位素年代学研究评述. 地球科学: 1-38. [Zhao F F,Chen Y J. 2020. Is the Wutai Group of Neoarchean or Paleoproterozoic?a review of isotope chronological studies. Earth Science,1-38. http://kns.cnki.netkcmsdetail/42.1874.P.20200305.1734.012.html] [11] 中国地质调查局. 2013. 全国1:50万地质图. http://www.ngac.org.cn/DataSpecial/geomap.html. [The China Geological Survey. 2013. 1:500000 Geological Map of China. http://www.ngac.org.cn/DataSpecial/geomap.html] [12] Allwood A C,Walter M R,Kamber B S,Marshall C P,Burch I W.2006. Stromatolite reef from the Early Archaean era of Australia. Nature, 441(7094): 714-718. [13] Awramik S M.2006. Respect for stromatolites. Nature, 441(7094): 700-701. [14] Bachan A,Kump L R.2015. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proceedings of the National Academy of Sciences, 112(21): 6562-6567. [15] Baker J C,Kassan J,Hamilton P J.1996. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group,southern Bowen Basin,eastern Australia. Sedimentology, 43(1): 77-88. [16] Battaglia S.1999. Applying X-ray geothermometer diffraction to a chlorite. Clays and Clay Minerals, 47(1): 54-63. [17] Bekker A,Holland H D,Wang P L,Rumble Ⅲ D,Stein H J,Hannah J L,Coetzee L L,Beukes N J.2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120. [18] Bekker A,Slack J F,Planavsky N,Krapez B,Hofmann A,Konhauser K O,Rouxel O J.2010. Iron formation: the sedimentary product of a complex interplay among mantle,tectonic,oceanic,and biospheric processes. Economic Geology, 105(3): 467-508. [19] Berner R A.1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research, 51(2): 359-365. [20] Beukes N J,Gutzmer J E N S.2008. Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. Reviews in Economic Geology, 15: 5-47. [21] Canfield D E,Zhang S,Wang H,Wang X,Zhao W,Su J,Bjerrum C J,Haxen E R,Hammarlund E U.2018. A Mesoproterozoic iron formation. Proceedings of the National Academy of Sciences, 115(17): E3895-E3904. [22] Cavarretta G,Gianelli G,Puxeddu M.1982. Formation of authigenic minerals and their use as indicators of the physicochemical parameters of the fluid in the Larderello-Travale geothermal field. Economic Geology, 77(5): 1071-1084. [23] Cloud P.1965. Significance of Gunflint(Precambrian)microflora-photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science, 148: 27-35. [24] Farquhar J,Bao H,Thiemens M.2000. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289(5480): 756-758. [25] Frierdich A J,Beard B L,Scherer M M,Johnson C M.2014. Determination of the Fe(Ⅱ)aq-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium. Earth and Planetary Science Letters, 391: 77-86. [26] Gäb F,Ballhaus C,Siemens J,Heuser A,Lissner M,Geisler T,Garbe-Schönberg D.2017. Siderite cannot be used as CO2 sensor for Archaean atmospheres. Geochimica et Cosmochimica Acta, 214: 209-225. [27] Gaines R R,Vorhies J S.2016. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation(Utah,USA). Sedimentology, 63(3): 662-698. [28] Garcia T I,Gorton M P,Li H,Wortmann U G,Spooner E T.2016. The geochemistry of the 2.75 Ga-old Helen Iron Formation,Wawa,Ontario-Insights into iron formation deposition from carbon isotopes and rare earth elements. Precambrian Research, 275: 357-368. [29] Guo Q,Strauss H,Kaufman A J,Schröder S,Gutzmer J,Wing B,Baker M A,Bekker A,Kim S T,Farquhar J.2009. Reconstructing Earth's surface oxidation across the Archean-Proterozoic transition. Geology, 37: 399-402. [30] Halama M,Swanner E D,Konhauser K O,Kappler A.2016. Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(Ⅲ)minerals and microbial biomass. Earth and Planetary Science Letters, 450: 243-253. [31] Halevy I,Alesker M,Schuster E M,Popovitz-Biro R,Feldman Y.2017. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2): 135-139. [32] Han C,Xiao W,Su B,Saky P A,Ao S,Zhang J,Wan B,Song D,Zhang Z,Wang Z,Ding J.2017. Neoarchean Algoma-type banded iron formation from the Northern Shanxi,the Trans-North China Orogen: SIMS U-Pb age,origin and tectonic setting. Precambrian Research, 303: 548-572. [33] Heimann A,Johnson C M,Beard B L,Valley J W,Roden E E,Spicuzza M J,Beukes N J.2010. Fe,C,and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294(1-2): 8-18. [34] Hoashi M,Bevacqua D C,Otake T,Watanabe Y,Hickman A H,Utsunomiya S,Ohmoto H.2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geoscience, 2(4): 301-306. [35] Holland H D.2002. Volcanic gases,black smokers,and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21): 3811-3826. [36] Holland H D.2006. The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 903-915. [37] Johnson C M,Ludois J M,Beard B L,Beukes N J,Heimann A.2013. Iron formation carbonates: paleoceanographic proxy or recorder of microbial diagenesis? Geology, 41(11): 1147-1150. [38] Kappler A,Pasquero C,Konhauser K O,Newman D K.2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(Ⅱ)-oxidizing bacteria. Geology, 33: 865-868. [39] Klein C.2005. Some Precambrian banded iron-formations(BIFs)from around the world: their age,geologic setting,mineralogy,metamorphism,geochemistry,and origins. American Mineralogist, 90(10): 1473-1499. [40] Köhler I,Konhauser K O,Papineau D,Bekker A,Kappler A.2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications, 4(1): 1-7. [41] Konhauser K O,Newman D K,Kappler A.2005. The potential significance of microbial Fe(Ⅲ)reduction during deposition of Precambrian banded iron formations. Geobiology, 3(3): 167-177. [42] Kröner A,Wilde S A,Li J H,Wang K Y.2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595. [43] Kusky T M,Li J.2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397. [44] Kusky T M,Li J H,Santosh M.2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1): 4-28. [45] Li J H,Kusky T M.2007. A Late Archean Foreland Fold and Thrust Belt in the North China Craton: implications for Early Collisional Tectonics. Gondwana Research, 12(1): 47-66. [46] Liu A Q,Tang D J,Shi X Y,Zhou L M,Zhou X Q,Shang M H,Li Y,Song H Y.2019. Growth mechanisms and environmental implications of carbonate concretions from the ~1.4 Ga Xiamaling Formation,North China. Journal of Palaeogeography, 8(1): 20-36. https://doi.org/10.1186/s42501-019-0036-4. [47] Liu C,Liu F,Shi J,Liu P,Yang H,Liu L,Wang W,Tian Z.2016. Depositional age and provenance of the Wutai Group: evidence from zircon U-Pb and Lu-Hf isotopes and whole-rock geochemistry. Precambrian Research, 281: 269-290. [48] Mozley.1989. Relation between depositional environment and the elemental composition of early diagenetic siderite. Geology, 17: 704-706. [49] Ohmoto H,Watanabe Y,Kumazawa K.2004. Evidence from massive siderite beds for a CO2-rich atmosphere before~1.8 billion years ago. Nature,429: 395-399. [50] Pecoits E,Gingras M K,Barley M E,Kappler A,Posth N R,Konhauser K O.2009. Petrography and geochemistry of the Dales Gorge banded iron formation: paragenetic sequence,source and implications for palaeo-ocean chemistry. Precambrian Research, 172(1-2): 163-187. [51] Peng P,Feng L,Sun F,Yang S,Su X,Zhang Z,Wang C.2017. Dating the Gaofan and Hutuo groups-targets to investigate the Paleoproterozoic great oxidation event in North China. Journal of Asian Earth Sciences, 138: 535-547. [52] Polat A,Kusky T,Li J,Fryer B,Kerrich R,Patrick K.2005. Geochemistry of Neoarchean(ca.2.55-2.50 Ga)volcanic and ophiolitic rocks in the Wutaishan greenstone belt,central orogenic belt,North China craton: implications for geodynamic setting and continental growth. Geological Society of America Bulletin,117(11-12): 1387-1399. [53] Posth N R,Konhauser K O,Kappler A.2013. Microbiological processes in banded iron formation deposition. Sedimentology, 60(7): 1733-1754. [54] Qiu Y,Zhao T,Li Y.2020. The Yunmengshan iron formation at the end of the Paleoproterozoic era. Applied Clay Science, 199: 105888. [55] Raiswell R,Reinhard C T,Derkowski A,Owens J,Bottrell S H,Anbar A D,Lyons T W.2011. Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale,Hamersley Basin,Australia: new insights on the patterns,controls and paleoenvironmental implications of authigenic mineral formation. Geochimica et Cosmochimica Acta, 75(4): 1072-1087. [56] Rasmussen B,Muhling J R,Suvorova A,Krapež B.2017. Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research, 290: 49-62. [57] Rasmussen B,Muhling J R.2018. Making magnetite late again: evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Research, 306: 64-93. [58] Rasmussen B,Muhling J R.2019. Syn-tectonic hematite growth in Paleoproterozoic stirling range “red beds”,Albany-Fraser orogen,Australia: Evidence for oxidation during late-stage orogenic uplift. Precambrian Research, 321: 54-63. [59] Riding R,Fralick P,Liang L.2014. Identification of an Archean marine oxygen oasis. Precambrian Research, 251: 232-237. [60] Roberts J A,Bennett P C,González L A,Macpherson G L,Milliken K L.2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32(4): 277-280. [61] Romanek C S,Jiménez-López C,Navarro A R,Sánchez-Román M,Sahai N,Coleman M.2009. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochimica et Cosmochimica Acta, 73(18): 5361-5376. [62] Tang D J,Shi X Y,Jiang G Q,Wu T,Ma J B,Zhou X Q.2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15. [63] Teixeira N L,Caxito F A,Rosière C A,Pecoits E,Vieira L,Frei R,Sial A N,Poitrasson F.2017. Trace elements and isotope geochemistry(C,O,Fe,Cr)of the Cauê iron formation,Quadrilátero Ferrífero,Brazil: evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research, 298: 39-55. [64] Tian Y Q.1991. Geology and Mineralization of the Wutai-Hengshan Greenstone Belt. Taiyuan: Shanxi Science and Technology Press, 137-152. [65] Tosca N J,Guggenheim S,Pufahl P K.2016. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. Bulletin, 128(3-4): 511-530. [66] Tosca N J,Jiang C Z,Rasmussen B,Muhling J.2019. Products of the iron cycle on the early Earth. Free Radical Biology and Medicine, 140: 138-153. [67] Trouwborst R E,Johnston A,Koch G,Luther Ⅲ G W,Pierson B K.2007. Biogeochemistry of Fe(Ⅱ)oxidation in a photosynthetic microbial mat: implications for Precambrian Fe(Ⅱ)oxidation. Geochimica et Cosmochimica Acta, 71(19): 4629-4643. [68] Vuillemin A,Wirth R,Kemnitz H,Schleicher A M,Friese A,Bauer K W,Simister R,Nomosatryo S,Ordoñez L,Ariztegui D,Henny C.2019. Formation of diagenetic siderite in modern ferruginous sediments. Geology, 47(6): 540-544. [69] Wang C,Zhang L,Lan C,Dai Y.2014. Petrology and geochemistry of the Wangjiazhuang banded iron formation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting. Precambrian Research, 255: 603-626. [70] Wilde S A,Cawood P A,Wang K,Nemchin A,Zhao G.2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan,Shanxi Province,demonstrating the application of precise SHRIMP U-Pb geochronology. Geological Society,London,Special Publications, 226(1): 5-25. [71] Wilde S A,Cawood P A,Wang K,Nemchin A A.2005. Granitoid evolution in the Late Archean Wutai Complex,North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613. [72] Wittkop C,Teranes J,Lubenow B,Dean W E.2014. Carbon-and oxygen-stable isotopic signatures of methanogenesis,temperature,and water column stratification in Holocene siderite varves. Chemical Geology, 389: 153-166. [73] Zhao G,Wilde S A,Cawood P A,Sun M.2001. Archean blocks and their boundaries in the North China Craton: lithological,geochemical,structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73. [74] Zhao G,Sun M,Wilde S A,Guo J.2004. Late Archaean to Paleoproterozoic evolution of the Trans-North China Orogen: insights from synthesis of existing data from the Hengshan-Wutai-Fuping belt. Geological Society,London,Special Publications, 226(1): 27-55. [75] Zhao G,Sun M,Wilde S A,Sanzhong L.2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136(2): 177-202. [76] Zhao G,Zhai M.2013. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Research, 23(4): 1207-1240. |