[1] 曹代勇,王崇敬,李靖,秦荣芳,杨光,周济. 2014. 煤系页岩气的基本特点与聚集规律. 煤田地质与勘探, 42(4): 25-30. [Cao D Y,Wang C J,Li J,Qin R F,Yang G,Zhou J.2014. Basic characteristics and accumulation rules of shale gas in coal measures. Coal Geology & Exploration, 42(4): 25-30] [2] 陈世悦,刘焕杰. 1999. 华北石炭—二叠纪层序地层格架及其特征. 沉积学报, 17(1): 63-70. [Chen S Y,Liu H J.1999. Sequence stratigraphic framework and its characteristics of the Carboniferous-Permian in North China. Acta Sedimentologica Sinica, 17(1): 63-70] [3] 冯增昭,张家强,金振奎,鲍志东,王国力. 2000. 中国西北地区奥陶纪岩相古地理. 古地理学报,2(3):1-14. [Feng Z Z,Zhang J Q,Jin Z K,Bao Z D,Wang G L.2000. Lithofacies palaeogeography of the Ordovician in Northwest China. Journal of Palaeogeography(Chinese Edition), 2(3): 1-14] [4] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. [Feng Z Z.2004. Single factor analysis and multifactor comprehensive mapping method: reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition), 6(1): 3-19] [5] 郭英海,刘焕杰,权彪,汪泽成,钱凯. 1998. 鄂尔多斯地区晚古生代沉积体系及古地理演化. 沉积学报, 16(3): 44-51. [Guo Y H,Liu H J,Quan B,Wang Z C,Qian K.1998. Lithofacies palaeogeography of the Ordovician in northwest China. Acta Sedimentologica Sinica, 16(3): 44-51] [6] 韩德馨,杨起. 1980. 中国煤田地质学: 下册. 北京: 煤炭工业出版社,1-415. [Han D X,Yang Q.1980. Coalfield Geology in China: Volume Ⅱ. Beijing: China Coal Industry Publishing House,1-415] [7] 韩德馨,王延斌,权彪,程顶胜. 1993. 中国泥盆纪聚煤作用的演化. 煤田地质与勘探, 21(5): 1-6. [Han D X,Wang Y B,Quan B,Cheng D S.1993. The evolution of Devonian coal accumulation in China. Coal Geology & Exploration, 21(5): 1-6] [8] 郝芳,陈建渝. 1995. 层序和体系域的有机相构成及其研究意义. 地质科技情报, 14(3): 79-83. [Hao F,Chen J Y.1995. Organic facies compositions of sequences and systems tracts and its studying significances. Geological Science and Technology Information, 14(3): 79-83] [9] 郝黎明,邵龙义. 2000. 基于层序地层格架的有机相研究进展. 地质科技情报, 19(4): 60-64. [Hao L M,Shao L Y.2000. Study advance of organic facies and its distribution in sequence frame. Geological Science and Technology Information, 19(4): 60-64] [10] 胡斌,张璐,刘顺喜,宋慧波,史来亮,胡磊. 2012. 河南省中二叠世山西期古地理特征. 古地理学报, 14(4): 411-422. [Hu B,Zhang L,Liu S X,Song H B,Shi L L,Hu L.2012. Palaeogeographic characteristics of the Middle Permian Shanxi Age in Henan Province. Journal of Palaeogeography(Chinese Edition), 14(4): 411-422] [11] 李宝芳,温显端,李贵东. 1999. 华北石炭、二叠系高分辨层序地层分析. 地学前缘,6(S1): 81-94. [Li B F,Wen X D,Li G D.1999. High resolution sequence stratigraphy analysis on the Permo-Carboniferous in North China Platform. Earth Science Frontiers,6(S1): 81-94] [12] 李思田. 1988. 断陷盆地分析与煤聚集规律: 中国东北部晚中生代断陷盆地沉积、构造演化和能源预测研究的方法与成果. 北京: 地质出版社,1-367. [Li S T.1988. Fault Basin Analysis and Coal Accumulation: an Approach to Sedimentation,Tectonic Evolution,and Energy Resource Prediction in the Late Mesozoic Fault Basins of Northeastern China. Beijing: Geological Publishing House,1-367] [13] 李雅楠,邵龙义,闫志明,侯海海,唐跃,Large D J.2018. 中侏罗世泥炭地净初级生产力及控制因素: 以准噶尔盆地南缘煤田为例. 中国科学(D辑: 地球科学), 48(10): 1324-1334. [Li Y N,Shao L Y,Yan Z M,Hou H H,Tang Y,Large D J.2018. Net primary productivity and its control of the Middle Jurassic peatlands: an example from the southern Junggar coalfield. Science China: Earth Sciences, 48(10): 1324-1334] [14] 李永洲,文桂华,李星涛,常益行,喻岳钰,赵龙梅,时小松,李翔,赵跃. 2018. 沉积微相控制下的煤系地层致密砂岩气储层预测方法: 以鄂尔多斯盆地大宁—吉县区块下二叠统山西组为例. 天然气工业,38(S1): 11-17. [Li Y Z,Wen G H,Li X T,Chang Y X,Yu Y Y,Zhao L M,Shi X S,Li X,Zhao Y.2018. Prediction method of tight sandstone gas reservoir in coal measures under the control of sedimentary microfacies: a case study of Lower Permian Shanxi Formation in Daning-Jixian block of Ordos Basin. Natural Gas Industry,38(S1): 11-17] [15] 李增学,魏久传,韩美莲. 2001. 海侵事件成煤作用: 一种新的聚煤模式. 地球科学进展,16(1): 120-124. [Li Z X,Wei J C,Han M L.2001. Coal formation in transgressive events: a new pattern of coal accumulation. Advance in Earth Sciences,16(1): 120-124] [16] 刘贝,黄文辉,敖卫华,闫德宇,许启鲁,滕娟. 2015. 沁水盆地晚古生代煤中稀土元素地球化学特征. 煤炭学报, 40(12): 2916-2926. [Liu B,Huang W H,Ao W H,Yan D Y,Xu Q L,Teng J.2015. Geochemistry characteristics of rare earth elements in the late Paleozoic coal from Qinshui Basin. Journal of China Coal Society, 40(12): 2916-2926] [17] 刘池洋,毛光周,邱欣卫,吴柏林,赵红格,王建强. 2013. 有机—无机能源矿产相互作用及其共存成藏(矿). 自然杂志, 35(1): 47-55. [Liu C Y,Mao G Z,Qiu X W,Wu B L,Zhao H G,Wang J Q.2013. Organic-inorganic energy minerals interactions and the accumulation and mineralization in the same sedimentary basins. Chinese Journal of Nature, 35(1): 47-55] [18] 刘东娜,曾凡桂,赵峰华,王红冬,解锡超,邹雨. 2018. 山西省煤系伴生三稀矿产资源研究现状及找矿前景. 煤田地质与勘探, 46(4): 1-7. [Liu D N,Zeng F G,Zhao F H,Wang H D,Xie X C,Zou Y.2018. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province. Coal Geology & Exploration, 46(4): 1-7] [19] 刘焕杰. 1982. 潮坪成煤环境初论: 三汇坝地区晚二叠世龙潭组含煤建造沉积环境模式. 中国矿业学院学报,(2): 61-71. [Liu H J.1982. A preliminary study of coal-forming environment of tidal flats-models of sedimentary environment of Upper Permian coal-bearing Longtan Formation in Sanhuiba. Journal of China Institute of Mining Technology,(2): 61-71] [20] 刘焕杰,贾玉如,龙耀珍,王宏伟. 1987. 华北石炭纪含煤建造的陆表海堡岛体系特点及其事件沉积. 沉积学报, 5(3): 73-80. [Liu H J,Jia Y R,Long Y Z,Wang H W.1987. The features of the barrier island systems of the epeiric sea and their event deposits of coal-bearing formations in Carboniferous of North China. Acta Sedimentologica Sinica, 5(3): 73-80] [21] 刘焕杰,张瑜瑾,王宏伟,贾玉茹,龙耀珍. 1991. 准格尔煤田含煤建造岩相古地理学研究. 北京: 地质出版社,1-128. [Liu H J,Zhang Y J,Wang H W,Jia Y R,Long Y Z.1991. Study on Lithofacies Paleogeography of Coal-Bearing Fomations of Junggar Coal Field. Beijing: Geological Publishing House,1-128] [22] 刘钦甫,杨晓杰,张鹏飞,卞建玲. 2002. 中国煤系高岭岩(土)资源成矿机理与开发利用. 矿物学报, 22(4): 359-364. [Liu Q F,Yang X J,Zhang P F,Bian J L.2002. Mineralization mechanism of kaolinitic rocks in China's coal measures,and their development and utilization. Acta Mineralogica Sinica, 22(4): 359-364] [23] 刘天绩,邵龙义,曹代勇,鞠崎,郭晋宁,鲁静. 2013. 柴达木盆地北缘侏罗系煤炭资源形成条件及资源评价. 北京: 地质出版社,1-276. [Liu T J,Shao L Y,Cao D Y,Ju Q,Guo J N,Lu J.2013. Forming-conditions and Resource Assessment of Jurrasic Coal in Northen Qaidam Basin. Beijing: Geological Publishing House,1-276] [24] 刘招君,孙平昌,柳蓉,孟庆涛,胡菲. 2016. 中国陆相盆地油页岩成因类型及矿床特征. 古地理学报, 18(4): 525-534. [Liu Z J,Sun P C,Liu R,Meng Q T,Hu F.2016. Genetic types and deposit features of oil shale in continental basin in China. Journal of Palaeogeograhpy(Chinese Edition), 18(4): 525-534] [25] 鲁静,邵龙义,杨敏芳,李永红,张正飞,王帅,云启成. 2014. 陆相盆地沼泽体系煤相演化、层序地层与古环境. 煤炭学报, 39(12): 2473-2481. [Lu J,Shao L Y,Yang M F,Li Y H,Zhang Z F,Wang S,Yun Q C.2014. Coal facies evolution,sequence stratigraphy and palaeoenvironment of swamp in terrestrial basin. Journal of China Coal Society, 39(12): 2473-2481] [26] 秦勇,傅雪海,岳巍,林大扬,叶建平,焦思红. 2000. 沉积体系与煤层气储盖特征之关系探讨. 古地理学报, 2(1): 77-84. [Qin Y,Fu X H,Yue W,Lin D Y,Ye J P,Jiao S H.2000. Relationship between depositional systems and characteristics of coalbed gas reservoir and its cap rock. Journal of Palaeogeography(Chinese Edition), 2(1): 77-84] [27] 桑树勋,秦勇,范炳恒,姜波,傅雪海. 2002. 层序地层学在陆相盆地煤层气资源评价中的应用研究. 煤炭学报, 27(2): 113-118. [Sang S X,Qin Y,Fan B H,Jiang B,Fu X H.2002. Study on sequence stratigraphy applied to coalbed methane resource assessment. Journal of China Coal Society, 27(2): 113-118] [28] 邵凯,邵龙义,曲延林,张强,王举,高迪,王东东,李柱. 2013. 东北地区早白垩世含煤岩系层序地层研究. 煤炭学报,38(S2): 423-433. [Shao K,Shao L Y,Qu Y L,Zhang Q,Wang J,Gao D,Wang D D,Li Z.2013. Study of sequence stratigraphy of the Early Cretaceous coal measures in Northeastern China. Journal of China Coal Society,38(S2): 423-433] [29] 邵龙义,张鹏飞,刘钦甫,郑茂杰. 1992. 湘中下石炭统测水组沉积层序及幕式聚煤作用. 地质论评, 38(1): 52-59. [Shao L Y,Zhang P F,Liu Q F,Zheng M J.1992. The Lower Carboniferous Ceshui Formation in central Hunan,South China: depositional sequences and episodic coal accumulation. Geological Review, 38(1): 52-59] [30] 邵龙义,汪浩,Large D J.2011. 中国西南地区晚二叠世泥炭地净初级生产力及其控制因素. 古地理学报, 13(5): 473-480. [Shao L Y,Wang H,Large D J.2011. Net primary productivity and its control of the Late Permian peatlands in southwestern China. Journal of Palaeogeography(Chinese Edition), 13(5): 473-480] [31] 邵龙义,董大啸,李明培,王海生,王东东,鲁静,郑明泉,程爱国. 2014a. 华北石炭—二叠纪层序—古地理及聚煤规律. 煤炭学报, 39(8): 1725-1734. [Shao L Y,Dong D X,Li M P,Wang H S,Wang D D,Lu J,Zheng M Q,Cheng A G.2014a. Sequence-palaeogeography and coal accumulation of the Carboniferous-Permian in the North China Basin. Journal of China Coal Society, 39(8): 1725-1734] [32] 邵龙义,李英娇,靳凤仙,高彩霞,张超,梁万林,黎光明,陈忠恕,彭正奇,程爱国. 2014b. 华南地区晚三叠世含煤岩系层序-古地理. 古地理学报, 16(5): 613-630. [Shao L Y,Li Y J,Jin F X,Gao C X,Zhang C,Liang W L,Li G M,Chen Z N,Peng Z Q,Cheng A G.2014b. Sequence stratigraphy and lithofacies palaeogeography of the Late Triassic coal measures in South China. Journal of Palaeogeography(Chinese Edition), 16(5): 613-630] [33] 邵龙义,杨致宇,李永红,商晓旭,王伟超,吕景高,文怀军. 2015. 青海木里聚乎更天然气水合物潜在区中侏罗世岩相古地理特征. 现代地质, 29(5): 1061-1072. [Shao L Y,Yang Z Y,Li Y H,Shang X X,Wang W C,Lü J G,Wen H J.2015. Lithofacies palaeogeography of the Middle Jurassic in the Juhugeng gas hydrate potential area in Muli,Qinghai Province. Geoscience, 29(5): 1061-1072] [34] 邵龙义,张超,闫志明,董大啸,高彩霞,李英娇,徐晓燕,梁万林,易同生,徐锡惠,黎光明,陈忠恕,程爱国. 2016. 华南晚二叠世层序-古地理及聚煤规律. 古地理学报, 18(6): 905-919. [Shao L Y,Zhang C,Yan Z M,Dong D X,Gao C X,Li Y J,Xu X Y,Liang W L,Yi T S,Xu X H,Li G M,Chen Z N,Cheng A G.2016. Sequence-palaeogeography and coal accumulation of the Late Permian in South China. Journal of Palaeogeography(Chinese Edition), 18(6): 905-919] [35] 邵龙义,王学天,鲁静,王东东,侯海海. 2017. 再论中国含煤岩系沉积学研究进展及发展趋势. 沉积学报, 35(5): 1016-1031. [Shao L Y,Wang X T,Lu J,Wang D D,Hou H H.2017. A reappraisal on development and prospect of coal sedimentology in China. Acta Sedimentologica Sinica, 35(5): 1016-1031] [36] 孙升林,吴国强,曹代勇,宁树正,乔军伟,朱华雄,韩亮,朱世飞,苗琦,周兢,刘亢,李聪聪,陈寒勇,蔡旭梅. 2014. 煤系矿产资源及其发展趋势. 中国煤炭地质, 26(11): 1-11. [Sun S L,Wu G Q,Cao D Y,Ning S Z,Qiao J W,Zhu H X,Han L,Zhu S F,Miao Q,Zhou J,Liu K,Li C C,Chen H Y,Cai X M.2014. Mineral resources in coal measures and development trend. Coal Geology of China, 26(11): 1-11] [37] 孙枢,王成善. 2009. “深时”(Deep Time)研究与沉积学. 沉积学报, 27(5): 792-810. [Sun S,Wang C S.2009. Deep time and sedimentology. Acta Sedimentologica Sinica, 27(5): 792-810] [38] 唐跃刚,郭鑫,李正越,王绍清,秦云虎,魏强,朱士飞,高伟程. 2000. 云南小发路C5煤层无烟煤特性与煤相分析. 矿业科学学报, 5(1): 12-21. [Tang Y G,Guo X,Li Z Y,Wang S Q,Qin Y H,Wei Q,Zhu S F,Gao W C.2020. Characteristics and coal facies of high quality anthracite from coal seam No.5 of Xiaofalu coal mine,Yunnan Province. Journal of Mining Science and Technology, 5(1): 12-21] [39] 田景春,陈洪德,覃建雄,侯中健,侯明才,彭军. 2004. 层序—岩相古地理图及其编制. 地球科学与环境学报, 26(1): 6-12. [Tian J C,Chen H D,Tan J X,Hou Z J,Hou M C,Peng J.2004. Case study of sequence-based lithofacies-palaeogeography research and mapping of south China. Journal of Earth Sciences and Environment, 26(1): 6-12] [40] 王成善. 2019. 深时古气候与未来地球. 国土资源科普与文化,(1): 4-9. [Wang C S.2019. Deep-time palaeoclimate and future Earth. Scientific and Cultural Popularization of Land and Resources,(1): 4-9] [41] 王东东,李增学,王真奉,吕大炜,刘海燕,王平丽,郑雪,吕育林,蔺兴旺. 2013. 黑龙江依兰盆地古近系煤与油页岩共生特点及层序地层格架. 中国煤炭地质, 25(12): 1-7. [Wang D D,Li Z X,Wang Z F,Lü D W,Liu H Y,Wang P L,Zheng X,Lü Y L,Lin X W.2013. Paleogene coal and oil shale paragenetic features and sequence stratigraphic framework in Yilan Basin,Heilongjiang. Coal Geology of China, 25(12): 1-7] [42] 王东东,邵龙义,刘海燕,邵凯,于得明,刘炳强. 2016a. 超厚煤层成因机制研究进展. 煤炭学报, 41(6): 1487-1497. [Wang D D,Shao L Y,Liu H Y,Shao K,Yu D M,Liu B Q.2016a. Research progress in formation mechanisms of super-thick coal seam. Journal of China Coal Society, 41(6): 1487-1497] [43] 王东东,李增学,吕大炜,刘海燕,王平丽,冯婷婷. 2016b. 陆相断陷盆地煤与油页岩共生组合及其层序地层特征. 地球科学, 41(3): 508-522. [Wang D D,Li Z X,Lü D W,Liu H Y,Wang P L,Feng T T.2016b. Coal and oil shale paragenetic assemblage and sequence stratigraphic features in continental faulted basin. Earth Science, 41(3): 508-522] [44] 王华,郑云涛,杨红. 2001. 法国典型聚煤盆地厚煤层独特的沉积条件分析. 煤田地质与勘探, 29(1): 1-4. [Wang H,Zheng Y T,Yang H.2001. Analysis on the sedimentary conditions of thick coalbeds in French faulted coal basins. Coal Geology & Exploration, 29(1): 1-4] [45] 王佟,王庆伟,傅雪海. 2014. 煤系非常规天然气的系统研究及其意义. 煤田地质与勘探, 42(1): 24-27. [Wang T,Wang Q W,Fu X H.2014. The significance and the systematic research of the unconventional gas in coal measures. Coal Geology & Exploration, 42(1): 24-27] [46] 王佟,邵龙义,夏玉成,傅雪海,孙玉壮,孙亚军,琚宜文,毕银丽,于景邨,谢志清,马国东,王庆伟,周兢,江涛. 2017. 中国煤炭地质研究取得的重大进展与今后的主要研究方向. 中国地质, 44(2): 242-262. [Wang T,Shao L Y,Xia Y C,Fu X H,Sun Y Z,Sun Y J,Ju Y W,Bi Y L,Yu J C,Xie Z Q,Ma G D,Wang Q W,Zhou J,Jiang T.2017. Major achievements and future research directions of the coal geology in China. Geology in China, 44(2): 242-262] [47] 王竹泉,潘随贤,顾寿昌,蔺广茂,杨锡禄,杜兴亚. 1964. 华北地台石炭纪岩相古地理. 煤炭学报, 1(1): 1-20. [Wang Z Q,Pan S X,Gu S C,Lin G M,Yang X L,Du X Y.1964. Lithofacies palaeogeography of Carboniferous in North China Platform. Journal of China Coal Society, 1(1): 1-20] [48] 吴冲龙,李绍虎,王根发,刘刚,孔春芳. 2006. 先锋盆地超厚优质煤层的异地成因模式. 沉积学报, 24(1): 1-9. [Wu C L,Li S H,Wang G F,Liu G,Kong C F.2006. New evidence and new model about allochthonous accumulation of extra-thick coalbeds in continental fault basin. Acta Sedimentologica Sinica, 24(1): 1-9] [49] 谢家荣. 2001(原著1949). 古地理为探矿工作之指南. 古地理学报, 3(4): 1-9. [Xie J R.2001. Palaeogeography as a guide to mineral exploration. Journal of Palaeogeography(Chinese Edition), 3(4): 1-9] [50] 徐克剑,邵龙义,马立军,野兆瑞,曲延林. 2015. 黑龙江兴凯湖古近系—新近系沉积环境及聚煤规律分析. 中国煤炭地质, 27(8): 1-7. [Xu K J,Shao L Y,Ma L J,Ye Z R,Qu Y L.2015. Paleogene-Neogene sedimentary environment and coal accumulation pattern analysis in lake Xingkai Basin,Heilongjiang. Coal Geology of China, 27(8): 1-7] [51] 徐小涛,郝洪波,王海亮,王东东. 2016. 山东五图煤矿李家崖组煤与油页岩共生沉积特征研究. 中国煤炭地质, 28(9): 1-9. [Xu X T,Hao H B,Wang H L,Wang D D.2016. Study on Lijiaya Formation coal and oil shale paragenesis sedimentary features in Wutu coalmine. Coal Geology of China, 28(9): 1-9] [52] 闫志明,邵龙义,王帅,Large D J,汪浩,孙钦平. 2016. 早白垩世泥炭地净初级生产力及其控制因素: 来自二连盆地吉尔嘎郎图凹陷6号煤的证据. 沉积学报, 34(6): 1068-1076. [Yan Z M,Shao L Y,Wang S,Large D J,Wang H,Sun Q P.2016. Net primary productivity and its control factors of early Cretaceous peatlands: evidence from No.6 coal in the Jiegalangtu sag of the Erlian Basin. Acta Sedimentologica Sinica, 34(6): 1068-1076] [53] 杨起,韩德馨. 1979. 中国煤田地质学: 上册. 北京: 煤炭工业出版社,1-261. [Yang Q,Han D X.1979. Coalfield Geology in China: Volume Ⅰ. Beijing: China Coal Industry Publishing House,1-261] [54] 张鹏飞,刘焕杰,卓越,贾玉如,陈昌荣,何楚玉,殷宗昌. 1983. 试论局限台地碳酸盐岩型含煤建造: 桂中马滩一带合山组的某些沉积特征. 沉积学报, 1(3): 16-28. [Zhang P F,Liu H J,Zhuo Y,Jia Y R,Chen C R,He C Y,Yin Z C.1983. The coal-bearing formation of carbonatite type in restricted platform: some sedimentary characteristics of Heshan Formation in the Matan region of central Guangxi. Acta Sedimentologica Sinica, 1(3): 16-28] [55] 张鹏飞,金奎励,吴涛,王昌桂. 1997. 吐哈盆地含煤沉积与煤成油. 北京: 煤炭工业出版社,1-269. [Zhang P F,Jin K L,Wu T,Wang C G.1997. Study on Sedimentology and Oil Source from Jurassic Coal-bearing Series in Tuha Basin,Northwestern China. Beijing: China Coal Industry Publishing House,1-269] [56] 张韬. 1995. 中国主要聚煤期沉积环境与聚煤规律. 北京: 地质出版社,1-273. [Zhang T.1995. Depositional Environment and Coal-accumulating Regularities of Main Coal-accumulating Stages of China. Beijing: Geological Publishing House,1-273] [57] 郑秀娟,杜远生,朱筱敏,刘招君,胡斌,吴胜和,邵龙义,旷红伟,罗静兰,钟大康,李华,何登发,朱如凯,鲍志东. 2020. 中国古地理学近十年主要进展. 矿物岩石地球化学通报, 40(1): 94-114. [Zheng X J,Du Y S,Zhu X M,Liu Z J,Hu B,Wu S H,Shao L Y,Kuang H W,Luo J L,Zhong D K,Li H,Ge D F,Zhu R K,Bao Z D.2020. The main progresses of Chinese palaeogeography in the past decade. Bulletin of Mineralogy,Petrology and Geochemistry, 40(1): 94-114] [58] 周倩羽. 2016. 西湖凹陷古近系煤沉积环境及生烃潜力研究. 中国矿业大学(北京)博士论文. [Zhou Q Y.2016. The depositional environments and hydrocarbon generation potential of the Paleogene coals in the Xihu depression. Doctoral dissertation of China University of Mining and Technology(Beijing)] [59] 周贤青,秦勇,陆鹿. 2019. 中国煤型铀地质—地球化学研究进展. 煤田地质与勘探, 47(4): 45-53. [Zhou X Q,Qin Y,Lu L.2019. Advances on geological-geochemical research of coal-type uranium in China. Coal Geology & Exploration, 47(4): 45-53] [60] 朱华雄,陈寒勇,章伟,宁树正,韩亮. 2016. 华北煤中金属矿产的种类和分布特征. 煤炭学报, 41(2): 303-309. [Zhu H X,Chen H Y,Zhang W,Ning S Z,Han L.2016. Metal mineral types and distribution characteristics in coal in Northern China. Journal of China Coal Society, 41(2): 303-309] [61] 朱如凯. 1997. 煤系高岭岩的地球化学判别标志. 地质论评, 43(2): 121-130. [Zhu R K.1997. Geochemical discriminant criteria of the genesis of kaolin rocks in coal measures. Geological Review, 43(2): 121-130] [62] 庄军. 1995. 鄂尔多斯盆地南部巨厚煤层形成条件. 煤田地质与勘探, 23(1): 9-13. [Zhuang J.1995. Formation conditions of extra-thick coal seam in southern Ordos Basin. Coal Geology & Exploration, 23(1): 9-13] [63] Bohacs K,Suter J.1997. Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples. AAPG Bulletin, 81: 1612-1639. [64] Brown S A E,Scott A C,Glasspool I J,Collinson M E.2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162-190. [65] Calder J H,Gibling M R,Mukhopadhyay P K.1991. Peat formation in a Westphalian B piedmont setting,Cumberland Basin,Nova Scotia: implication for the maceral-based,interpretation of rheotrophic and raised paleomires. Bulletin of Society of Geology, 162: 283-298. [66] Diessel C F K.1982. An appraisal of coal facies based on maceral characteristics. Australian Coal Geology, 4: 474-483. [67] Diessel C F K.1986. On the correlation between coal facies and depositional environment: advances in the study of the Sydney Basin. Proceedings of 20th Symposium of University of Newcastle,19-22. [68] Diessel C F K.1992. Coal-bearing Depositional Systems. Berlin: Springer-Verlag Berlin,1-721. [69] Diessel C F K.2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81(4): 251-268. [70] Djarar L,Wang H,Guriaud M,Clermonte J,Courel L,Dumain M,Laversanne J.1997. The Cevennes Stephanian Basin(massif central): an example of relationship between sedimentation and late-orogenic extensive tectonics of the Variscan belt. Geodynamica Acta(Paris), 9(5): 193-222. [71] Flint S S,Aitken J F,Hampson G.1995. Application of sequence stratigraphy to coal-bearing coastal plain successions: implications for the UK coal measures. Geological Society London Special Publications, 82(1): 1-16. [72] Glasspool I J,Scott A C.2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627-630. [73] Glasspool I J,Scott A C,Waltham D,Pronina N,Shao L Y.2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6: 756. [74] Greb S F, DiMichele W A, Gastaldo R A. 2006. Evolution and Importance of Wetlands in Earth History. In: Greb S F,DiMichele W A(eds). Wetlands Through Time. Boulder: Geological Society of America Special Paper 399,1-40. [75] Guo B,Shao L Y,Hilton J,Wang S,Zhang L.2018. Sequence stratigraphic interpretation of peatland evolution in thick coal seams: examples from Yimin Formation(Early Cretaceous),Hailaer Basin,China. International Journal of Coal Geology, 196: 211-231. [76] Horne J C,Ferm J C,Caruccio F T,Baganz B P.1978. Depositional models in coal exploration and mine planning in Appalachian region. AAPG Bulletin, 62(12): 2379-2411. [77] Jerrett R M,Davies R C,Hodgson D M,Flint S S,Chiverrell R C.2011a. The significance of hiatal surfaces in coal seams. Journal of the Geological Society, 168(3): 629-632. [78] Jerrett R M,Flint S S,Davies R C,Hodgson D M.2011b. Sequence stratigraphic interpretation of a Pennsylvanian(Upper Carboniferous)coal from the central Appalachian Basin,USA. Sedimentology, 58: 1180-1207. [79] Jones R.1987. Organic facies. In: Welte D(ed). Advance in Petroleum Geochemistry. London: Academic Press,1-89. [80] Large D J,Jones T F,Somerfield C,Gorringe M C,Spiro B,Macquaker J H S,Atkin B P.2003. High-resolution terrestrial record of orbital climate forcing in coal. Geology, 31: 303-306. [81] Large D J,Jones T F,Briggs J.2004. Orbital tuning and correlation of 1.7 m.y. of continuous carbon storage in an Early Miocene peatland. Geology, 32: 873-876. [82] Li Y N,Shao L Y,Hou H H,Tang Y,Yuan Y,Zhang J Q,Shang X X,Lu J.2018b. Sequence stratigraphy,palaeogeography,and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin,NW China. International Journal of Coal Geology, 192: 14-38. [83] Li Y N,Shao L Y,Fielding C R,Wang D W,Mu G Y,Luo H H.2020. Sequence stratigraphic analysis of thick coal seams in paralic environments: a case study from the Early Permian Shanxi Formation in the Anhe coalfield,Henan Province,North China. International Journal of Coal Geology, 222: 103451. [84] Li Z X,Wang D D,Lü D W,Li Y,Liu H Y,Wang P L,Liu Y,Liu J Q,Li D D.2018a. The geologic settings of Chinese coal deposits. International Geology Review, 60(5): 1-31. [85] Lü D W,Wang D D,Li Z X,Liu H Y,Li Y.2017. Depositional environment,sequence stratigraphy and sedimentary mineralization mechanism in the coal bed and oil shale-bearing succession: a case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32-51. [86] Marynowski L,Simoneit B R T.2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(12): 785-798. [87] McCabe P J. 1984. Depositional models of coal and coal-bearing strata. In: Rahamani R A,Flores R M(eds). Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists,Special Publication, 7: 13-42. [88] Miall A D.1995. Whither stratigraphy?Sedimentary Geology, 100: 5-20. [89] Petersen H I,Andsbjerg J.1996. Organic facies development within Middle Jurassic coal seams,Danish Central Graben,and evidence for relative sea-level control on the peat accumulation in a coastal plain environmet. Sedimentary Geology, 106: 259-277. [90] Petersen H I,Ratanasthien B.2011. Coal facies in a Cenozoic paralic lignite bed,Krabi Basin,southern Thailand: Changing peat-forming conditions related to relative sea-level controlled watertable variations. International Journal of Coal Geology, 87: 2-12. [91] Rogers M A.1979. Application of organic facies concepts to hydrocarbon source rock evaluation. Proceedings of the 10th World Petroleum Congress, 2: 23-30. [92] Scott A C.2000. The Pre-Quaternary history of fire. Palaeogeography,Palaeoclimatology,Palaeoecology, 164(1): 281-329. [93] Scott A C,Glasspool I J.2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70(1-3): 53-66. [94] Shao L Y,Zhang P F,Gayer R A,Chen J L,Dai S F.2003. Coal in a carbonate sequence stratigraphic framework: The Upper Permian Heshan Formation in central Guangxi,southern China. Journal of Geological Society London, 160: 285-298. [95] Shao L Y,Wang H,Yu X H,Lu J,Zhang M Q.2012. Paleo-fires and atmospheric oxygen levels in the latest Permian. Acta Geologica Sinica(English Edition), 86(4): 949-962. [96] Shao L Y,Wang X T,Wang D D,Li M P,Wang S,Li Y J,Shao K,Zhang C,Gao C X,Dong D X,Cheng A G,Lu J,Ji C W,Gao D.2020. Sequence stratigraphy,paleogeography,and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science & Technology, 7(2): 240-262. [97] Shearer J C,Staub J R,Moore T A.1994. The conundrum of coal bed thickness: a theory for stacked mire sequences. Journal of Geology, 102: 611-617. [98] Stach E,Mackowsky M T H,Teichmüller M,Taylor G H,Chandra D,Teichmüller R.1982. Stach's Textbook of Coal Petrology. Berlin:Stuttgart,1-535. [99] Teichmüller M.1982. Origin of the petrographic constitutions of coal. In: Stach E,Mackowsky M T,Teichmüller M,Taylor G H,Chandra D,Teichmüller R(eds). Stach's Textbook of Coal Petrology. Berlin,Stuttgart: Gebrüder Borntraeger,1-428. [100] Tyson R.1996. Sequence-stratigraphical interpretation of organic facies variation in marine siliciclastic system: General principal and application to the on shore Kimmeridge clay formation. In: Hesselbo S,Parkinson D(eds). Sequence Stratigraphy in British Geology. London: Geology Society Special Publication,75-96. [101] Udden J A.1912. Geology and mineral resources of the Peoria quadrangle,Illinois. U.S. Geological Survey Bulletin, 506: 103. [102] van Wagoner J C,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops concepts for high-resolution correlation of time and facies. AAPG,Methods in Exploration Series, 7: 55. [103] Wadsworth J,Boyd R,Diessel C,Leckie D.2003. Stratigraphic style of coal and non-marine strata high accommodation setting: Falher member and Gates Formation(Lower Cretaceous),western Canada. Bulletin of Canadian Petroleum Geology, 51(3): 275-303. [104] Wanless H R,Weller J M.1932. Correlation and extent of Pennsylvanian Cyclothems. Geological Society of America Bulletin, 43: 1003-1016. [105] Wang D D,Yan Z M,Liu H Y,Lü D W,Hou Y J.2018. The net primary productivity of mid-Jurassic peatland and its control factors: evidenced by the Ordos Basin. International Journal of Mining Science and Technology, 28(2): 177-185. [106] Wang D D,Li Z X,Liu H Y,Lü D W,Dong G Q.2019c. The genetic environmental transformation mechanism of coal and oil shale deposits in eastern China's continental fault basins and the developmental characteristics of the area's symbiotic assemblages: taking Huangxian Basin as an example. Petroleum Science, 16(3): 469-491. [107] Wang D D,Mao Q,Dong G Q,Yang S P,Lü D W,Yin L S.2019d. The genetic mechanism of inertinite in the Middle Jurassic inertinite-rich coal seams of the southern Ordos Basin. Journal of Geological Research, 1(3): 1-15. [108] Wang S,Shao L Y,Wang D D,Hilton J,Guo B,Lu Jing.2019a. Controls on accumulation of anomalously thick coals: implications for sequence stratigraphic analysis. Sedimentology, 67(2): 991-1013. [109] Wang S,Shao L Y,Yan Z M,Shi M J,Zhang Y H.2019b. Characteristics of Early Cretaceous wildfires in peat-forming environment,NE China. Journal of Palaeogeography, 8(3): 238-250. [110] Xu X T,Shao L Y,Fu Y F,Wang D D,Cai H A,Qin J Y,Hou H H,Zhao J.2020. Sequence palaeogeography,lacustrine basin evolution,and coal accumulation in the Lower Cretaceous Fuxin continental faulted basin,China. Geological Journal, 55(2): 1195-1215. [111] Yan Z M,Shao L Y,Glasspool I J,Wang J,Wang X T,Wang H.2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. International Journal of Coal Geology, 207: 75-83. [112] Zhang Z H,Wang C S,Lü D W,Hay W W,Wang T,Cao S.2020. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change, 184: 103051. |